Suppr超能文献

锂金属阳极中的枝晶形成:一项原子分子动力学研究。

Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study.

作者信息

Selis Luis A, Seminario Jorge M

机构信息

Department of Chemical Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Texas A&M University College Station TX 77843 USA

出版信息

RSC Adv. 2019 Sep 4;9(48):27835-27848. doi: 10.1039/c9ra05067a. eCollection 2019 Sep 3.

Abstract

Lithium-metal is a desired material for anodes of Li-ion and beyond Li-ion batteries because of its large theoretical specific capacity of 3860 mA h g (the highest known so far), low density, and extremely low potential. Unfortunately, there are several problems that restrict the practical application of lithium-metal anodes, such as the formation of dendrites and reactivity with electrolytes. We present here a study of lithium dendrite formation on a Li-metal anode covered by a cracked solid electrolyte interface (SEI) of LiF in contact with a typical liquid electrolyte composed of 1 M LiPF salt solvated in ethylene carbonate. The study uses classical molecular dynamics on a model nanobattery. We tested three ways to charge the nanobattery: (1) constant current at a rate of one Li per 0.4 ps, (2) pulse train 10 Li per 4 ps, and (3) constant number ions in the electrolyte: one Li enters the electrolyte from the cathode as one Li exits the electrolyte to the anode. We found that although the SEI does not interfere with the lithiation, the mere presence of a crack in the SEI boosts and guides dendrite formation at temperatures between 325 K and 410.7 K at any C-rate, being more favorable at 325 K than at 410.7 K. On the other hand, we find that a higher C-rate (2.2C) favors the lithium dendrite formation compared to a lower C-rate (1.6C). Thus the battery could store more energy in a safe way at a lower C-rate.

摘要

锂金属是锂离子电池及超越锂离子电池体系的阳极理想材料,因其理论比容量高达3860 mA h g(是目前已知最高的)、密度低且电位极低。不幸的是,存在一些问题限制了锂金属阳极的实际应用,比如枝晶的形成以及与电解质的反应活性。我们在此展示了一项关于锂枝晶在锂金属阳极上形成的研究,该阳极覆盖有与由1 M LiPF盐溶解于碳酸亚乙酯组成的典型液体电解质接触的LiF裂纹固体电解质界面(SEI)。该研究在一个模型纳米电池上采用经典分子动力学方法。我们测试了给纳米电池充电的三种方式:(1)以每0.4 ps一个Li的速率恒流充电,(2)每4 ps 10个Li的脉冲序列充电,以及(3)电解质中离子数恒定:一个Li从阴极进入电解质,同时一个Li从电解质进入阳极。我们发现,尽管SEI不干扰锂化过程,但SEI中仅仅存在裂纹就在325 K至410.7 K的温度范围内、在任何C倍率下都会促进并引导枝晶形成,在325 K时比在410.7 K时更有利于枝晶形成。另一方面,我们发现与较低的C倍率(1.6C)相比,较高的C倍率(2.2C)更有利于锂枝晶形成。因此,电池在较低的C倍率下能够以更安全的方式存储更多能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c07/9071028/183ca800147f/c9ra05067a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验