Suppr超能文献

细菌趋化作用中信号的重构。

Reconstitution of signaling in bacterial chemotaxis.

作者信息

Wolfe A J, Conley M P, Kramer T J, Berg H C

出版信息

J Bacteriol. 1987 May;169(5):1878-85. doi: 10.1128/jb.169.5.1878-1885.1987.

Abstract

Strains missing several genes required for chemotaxis toward amino acids, peptides, and certain sugars were tethered and their rotational behavior was analyzed. Null strains (called gutted) were deleted for genes that code for the transducers Tsr, Tar, Tap, and Trg and for the cytoplasmic proteins CheA, CheW, CheR, CheB, CheY, and CheZ. Motor switch components were wild type, flaAII(cheC), or flaBII(cheV). Gutted cells with wild-type motors spun exclusively counterclockwise, while those with mutant motors changed their directions of rotation. CheY reduced the bias (the fraction of time that cells spun counterclockwise) in either case. CheZ offset the effect of CheY to an extent that varied with switch allele but did not change the bias when tested alone. Transducers also increased the bias in the presence of CheY but not when tested alone. However, cells containing transducers and CheY failed to respond to attractants or repellents normally detected in the periplasm. This sensitivity was restored by addition of CheA and CheW. Thus, CheY both enhances clockwise rotation and couples the transducers to the flagella. CheZ acts, at the level of the motor, as a CheY antagonist. CheA or CheW or both are required to complete the signal pathway. A model is presented that explains these results and is consistent with other data found in the literature.

摘要

缺失对氨基酸、肽和某些糖类趋化性所需的几个基因的菌株被固定,并分析其旋转行为。缺失菌株(称为缺失型)缺失了编码传感器Tsr、Tar、Tap和Trg以及细胞质蛋白CheA、CheW、CheR、CheB、CheY和CheZ的基因。运动开关组件为野生型、flaAII(cheC)或flaBII(cheV)。具有野生型马达的缺失型细胞仅逆时针旋转,而具有突变型马达的细胞则改变其旋转方向。在任何一种情况下,CheY都会降低偏差(细胞逆时针旋转的时间比例)。CheZ在一定程度上抵消了CheY的作用,其程度因开关等位基因而异,但单独测试时不会改变偏差。在存在CheY的情况下,传感器也会增加偏差,但单独测试时不会。然而,含有传感器和CheY的细胞无法正常响应在周质中通常检测到的引诱剂或驱避剂。通过添加CheA和CheW可恢复这种敏感性。因此,CheY既增强顺时针旋转,又将传感器与鞭毛耦合。CheZ在马达水平上作为CheY的拮抗剂起作用。需要CheA或CheW或两者来完成信号通路。提出了一个模型来解释这些结果,并且与文献中发现的其他数据一致。

相似文献

1
Reconstitution of signaling in bacterial chemotaxis.
J Bacteriol. 1987 May;169(5):1878-85. doi: 10.1128/jb.169.5.1878-1885.1987.
2
Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli.
J Bacteriol. 1989 Sep;171(9):5190-3. doi: 10.1128/jb.171.9.5190-5193.1989.
3
Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate.
J Bacteriol. 1998 Jul;180(13):3375-80. doi: 10.1128/JB.180.13.3375-3380.1998.
4
Determinants of chemotactic signal amplification in Escherichia coli.
J Mol Biol. 2001 Mar 16;307(1):119-35. doi: 10.1006/jmbi.2000.4389.
6
Control of direction of flagellar rotation in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):201-6. doi: 10.1073/pnas.95.1.201.
7
pH dependence of CheA autophosphorylation in Escherichia coli.
J Bacteriol. 1994 Jul;176(13):3870-7. doi: 10.1128/jb.176.13.3870-3877.1994.
10
Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides.
Mol Microbiol. 1995 Jul;17(2):357-66. doi: 10.1111/j.1365-2958.1995.mmi_17020357.x.

引用本文的文献

2
The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen .
Int J Mol Sci. 2022 Jan 9;23(2):697. doi: 10.3390/ijms23020697.
3
Surveying a Swarm: Experimental Techniques To Establish and Examine Bacterial Collective Motion.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0185321. doi: 10.1128/AEM.01853-21. Epub 2021 Dec 8.
4
A virtual reality interface for the immersive manipulation of live microscopic systems.
Sci Rep. 2021 Apr 7;11(1):7610. doi: 10.1038/s41598-021-87004-5.
7
Invariance properties of bacterial random walks in complex structures.
Nat Commun. 2019 Jun 4;10(1):2442. doi: 10.1038/s41467-019-10455-y.
8
Dynamic density shaping of photokinetic .
Elife. 2018 Aug 14;7:e36608. doi: 10.7554/eLife.36608.
9
Light controlled 3D micromotors powered by bacteria.
Nat Commun. 2017 Jun 28;8:15974. doi: 10.1038/ncomms15974.
10
Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.
Biochemistry. 2016 Sep 6;55(35):4873-84. doi: 10.1021/acs.biochem.6b00754. Epub 2016 Aug 19.

本文引用的文献

1
Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions.
J Bacteriol. 1982 Jul;151(1):106-13. doi: 10.1128/jb.151.1.106-113.1982.
2
Molecular cloning of chemotaxis genes and overproduction of gene products in the bacterial sensing system.
J Bacteriol. 1981 Aug;147(2):390-400. doi: 10.1128/jb.147.2.390-400.1981.
3
Requirement of ATP in bacterial chemotaxis.
J Biol Chem. 1982 Jul 25;257(14):7969-75.
4
Receptor structure in the bacterial sensing system.
Proc Natl Acad Sci U S A. 1980 Dec;77(12):7157-61. doi: 10.1073/pnas.77.12.7157.
5
Impulse responses in bacterial chemotaxis.
Cell. 1982 Nov;31(1):215-26. doi: 10.1016/0092-8674(82)90421-4.
6
Overlapping genes at the cheA locus of Escherichia coli.
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5370-4. doi: 10.1073/pnas.77.9.5370.
7
A miniature flow cell designed for rapid exchange of media under high-power microscope objectives.
J Gen Microbiol. 1984 Nov;130(11):2915-20. doi: 10.1099/00221287-130-11-2915.
8
Sensory transduction in Escherichia coli: regulation of the demethylation rate by the CheA protein.
Proc Natl Acad Sci U S A. 1984 Aug;81(16):5061-5. doi: 10.1073/pnas.81.16.5061.
9
Direction of flagellar rotation in bacterial cell envelopes.
J Bacteriol. 1984 Apr;158(1):222-30. doi: 10.1128/jb.158.1.222-230.1984.
10
Chemotactic response of Escherichia coli to chemically synthesized amino acids.
J Bacteriol. 1983 Sep;155(3):1463-6. doi: 10.1128/jb.155.3.1463-1466.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验