Li Yongping, Yuan Yufeng, Peng Xiao, Song Jun, Liu Junxian, Qu Junle
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 People's Republic of China
College of Physical Science and Technology, Guangxi Normal University Guilin 541004 People's Republic of China.
RSC Adv. 2019 Sep 20;9(51):29805-29812. doi: 10.1039/c9ra05125b. eCollection 2019 Sep 18.
This study proposed a novel Fano resonance (FR) biosensor with ultrahigh detection sensitivity by integrating two dimensional (2D) hexagonal boron nitride (h-BN) nanosheets with a plasmonic silver film-silicon hybrid nanostructure. Owing to its ultralow-loss in surface plasmon polaritons (SPPs), 2D h-BN nanosheets can act as a planar photon waveguide (PWG) for generating energy level splitting. Notably, both asymmetric FR sharp lines and plasmon induced transparency (PIT) can be produced by modulating the coupling strength between the planar PWG mode provided by h-BN nanosheets and the surface plasmon polariton (SPP) mode in the silver film-silicon hybrid nanostructure. Compared with conventional phase-modulation SPR biosensors, our proposed configuration based on Fano resonance can produce ultrahigh reflectivity of 0.934 and overcome the limitation of quasi-darkness reflectivity which is difficult for further phase extraction. More importantly, our proposed FR configuration can provide a promising phase detection sensitivity as high as 3.13 × 10 degree per RIU (refractive index unit, RIU), which is enhanced by almost 100 times compared with conventional phase-modulation SPR biosensors. In addition, our proposed configuration has also shown the characteristics of multiple-order Fano resonances, largely depending on the partial coupling between the SPP mode and the different-order PWG mode. Our proposed FR biosensor can provide a highly promising candidate for designing a multiple-order FR platform for performing ultrasensitive detection.
本研究通过将二维(2D)六方氮化硼(h-BN)纳米片与等离子体银膜-硅混合纳米结构集成,提出了一种具有超高检测灵敏度的新型法诺共振(FR)生物传感器。由于其在表面等离激元极化激元(SPP)中具有超低损耗,二维h-BN纳米片可作为平面光子波导(PWG)用于产生能级分裂。值得注意的是,通过调制h-BN纳米片提供的平面PWG模式与银膜-硅混合纳米结构中的表面等离激元极化激元(SPP)模式之间的耦合强度,既可以产生不对称的FR锐线,也可以产生等离子体诱导透明(PIT)。与传统的相位调制表面等离子体共振(SPR)生物传感器相比,我们提出的基于法诺共振的结构可以产生高达0.934的超高反射率,并克服了准暗反射率的限制,而准暗反射率对于进一步的相位提取来说是困难的。更重要的是,我们提出的FR结构可以提供高达3.13×10度/RIU(折射率单位,RIU)的有前景的相位检测灵敏度,与传统的相位调制SPR生物传感器相比提高了近100倍。此外,我们提出的结构还显示出多阶法诺共振的特性,这在很大程度上取决于SPP模式与不同阶PWG模式之间的部分耦合。我们提出的FR生物传感器可为设计用于执行超灵敏检测的多阶FR平台提供极具前景的候选方案。
Sensors (Basel). 2017-8-21
Sensors (Basel). 2020-6-11
Opt Express. 2018-6-25
Nanomaterials (Basel). 2020-4-5
Nanomaterials (Basel). 2022-11-19
Comput Intell Neurosci. 2022-9-1
Sens Actuators B Chem. 2021-10-1
Nanomaterials (Basel). 2021-4-16
Sensors (Basel). 2020-6-11
Opt Express. 2018-6-25
Nat Commun. 2018-7-5
Nat Mater. 2018-2
Opt Express. 2016-7-25
Chem Soc Rev. 2016-7-11
Nano Lett. 2011-7-14