Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR, 97214-5793, USA.
Nat Commun. 2018 Jul 5;9(1):2623. doi: 10.1038/s41467-018-05117-4.
Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.
发展可扩展的量⼦光电子技术需要在⽚上集成光电子组件。最近,六⽅氮化硼(hBN)作为⼀种很有前途的平台出现了,此前曾有报道称其具有双曲声⼦极化激元和光稳定、超亮的量⼦发射器。然⽽,在可扩展的⽚上纳⽶光电路和腔量⼦电动力学(QED)实验中利⽤ hBN 需要具有强⼤的技术来制造高质量的光学谐振器。在这封信中,我们设计并制造了来⾃ hBN 的悬浮量⼦晶体腔,并证明了其超过 2000 的品质因数(Q)。随后,我们通过直接写入 EBIE 显⽰了对单个腔的确定性、迭代调谐,⽽ Q 因数没有明显下降。基于范德华材料的纳⽶光电子学中可调谐腔的证明是⼀个前所未有的进步。我们的结果和 hBN 处理⽅法为集成量⼦光电子学、极化激元和腔 QED 实验中的应⽤的固态系统开辟了有前途的途径。