Suppr超能文献

基于卷积神经网络的新闻媒体自杀分类。

Suicide Classification for News Media Using Convolutional Neural Networks.

机构信息

Department of Applied Mathematics, Universidad de Valladolid.

Servicio de Psiquiatría, Complejo Asistencial de Soria.

出版信息

Health Commun. 2023 Oct;38(10):2178-2187. doi: 10.1080/10410236.2022.2058686. Epub 2022 May 9.

Abstract

Currently, the process of evaluating suicide is highly subjective, which limits the efficacy and accuracy of prevention efforts. Artificial intelligence (AI) has emerged as a mean of investigating large datasets to identify patterns within 'big data' that can determine the factors on suicide outcomes. Here, we used AI tools to extract the topic from (press and social) media texts. However, news media articles lack of suicide tags. Using tweets with hashtags related to suicide, we trained a neuronal model that identifies if a given text has a suicide-related topic. Our results suggest a high level of impact of suicide cases in the media, and an intrinsic thematic relationship of suicide news. These results pave the way to build more interpretable suicide data from the media, which may help to better track, understand its origin, and improve prevention strategies.

摘要

目前,评估自杀的过程具有高度主观性,这限制了预防工作的效果和准确性。人工智能(AI)已经成为一种调查大数据集以识别“大数据”中模式的手段,这些模式可以确定影响自杀结果的因素。在这里,我们使用 AI 工具从(新闻和社交媒体)媒体文本中提取主题。然而,新闻媒体文章缺乏自杀标签。我们使用带有与自杀相关的标签的推文来训练神经元模型,以确定给定文本是否具有与自杀相关的主题。我们的研究结果表明,媒体对自杀案件的影响程度很高,且自杀新闻具有内在的主题关系。这些结果为从媒体构建更具可解释性的自杀数据铺平了道路,这可能有助于更好地跟踪、理解其起源,并改进预防策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验