Suppr超能文献

仿生可拉伸纤维基传感器用于智能人机交互。

Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions.

机构信息

School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China.

School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China.

出版信息

ACS Appl Mater Interfaces. 2022 May 18;14(19):22666-22677. doi: 10.1021/acsami.2c05823. Epub 2022 May 9.

Abstract

Wearable integrated sensing devices with flexible electronic elements exhibit enormous potential in human-machine interfaces (HMI), but they have limitations such as complex structures, poor waterproofness, and electromagnetic interference. Herein, inspired by the profile of Lindernia nummularifolia (LN), a bionic stretchable optical strain (BSOS) sensor composed of an LN-shaped optical fiber incorporated with a stretchable substrate is developed for intelligent HMI. Such a sensor enables large strain and bending angle measurements with temperature self-compensation by the intensity difference of two fiber Bragg gratings' (FBGs') center wavelength. Such configurations enable an excellent tensile strain range of up to 80%, moreover, leading to ultrasensitivity, durability (≥20,000 cycles), and waterproofness. The sensor is also capable of measuring different human activities and achieving HMI control, including immersive virtual reality, robot remote interactive control, and personal hands-free communication. Combined with the machine learning technique, gesture classification can be achieved using muscle activity signals captured from the BSOS sensor, which can be employed to obtain the motion intention of the prosthetic. These merits effectively indicate its potential as a solution for medical care HMI and show promise in smart medical and rehabilitation medicine.

摘要

具有柔性电子元件的可穿戴集成传感设备在人机接口(HMI)中具有巨大的潜力,但它们存在结构复杂、防水性差和电磁干扰等局限性。受山麦冬(LN)形态的启发,本文开发了一种仿生可拉伸光学应变(BSOS)传感器,它由一个 LN 形状的光纤与一个可拉伸基底组成,用于智能 HMI。该传感器通过两个光纤布拉格光栅(FBG)中心波长的强度差实现了温度自补偿的大应变和弯曲角度测量。这种配置可实现高达 80%的拉伸应变范围,从而实现超灵敏、耐用(≥20,000 次循环)和防水性能。该传感器还可以测量不同的人体活动并实现 HMI 控制,包括沉浸式虚拟现实、机器人远程交互控制和个人免提通信。结合机器学习技术,BSOS 传感器可以捕获肌肉活动信号,从而实现手势分类,以获取假肢的运动意图。这些优点有效地表明了其作为医疗保健 HMI 解决方案的潜力,并在智能医疗和康复医学方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验