Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Republic of Korea.
BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Feb 21;16(7):9551-9560. doi: 10.1021/acsami.3c18588. Epub 2024 Feb 8.
Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress-strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress-strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
可拉伸传感器已经被广泛研究和开发,用于人体运动检测、触摸传感器和医疗保健监测,通常将机械/结构变形转换为电信号。可拉伸材料的粘弹性应变通常会导致在广泛的应变范围内产生非线性的应力-应变特性,因此,身体关节处的可拉伸传感器在预测和识别人体手势方面的准确性较低。环境变化,如温度和湿度,会进一步恶化人体手势的准确识别。在这里,我们展示了一种环境适应性强、高应变速率线性度(高达 ε=150%)和高耐用性(>100,000 次循环)的可拉伸传感器,它可以贴合在身体关节上,用于人体手势识别。我们的基于离子液体的可拉伸薄膜的蛇形结构使我们能够构建机械应变和温度变化的广泛数据集,用于基于机器学习的手势识别。使用基于机器学习的算法分析对不同应变和环境刺激的信号识别和训练,成功地以 92.86%(-平方)的准确率测量和预测了变温环境中的关节运动。因此,我们相信我们的基于蛇形离子凝胶的可拉伸传感器与机器学习分析的结合将是朝着环境适应性和多分析物传感应用迈出的重要一步。我们提出的基于机器学习的多传感器系统可能会推动未来电子设备的发展,如可穿戴电子设备、软机器人、电子皮肤和人机交互系统。