Wang Hongxin, Zhao Jiannan, Wang Huatian, Hu Cheng, Peng Jigen, Yue Shigang
IEEE Trans Cybern. 2023 Oct;53(10):6340-6352. doi: 10.1109/TCYB.2022.3170699. Epub 2023 Sep 15.
Small target motion detection within complex natural environments is an extremely challenging task for autonomous robots. Surprisingly, the visual systems of insects have evolved to be highly efficient in detecting mates and tracking prey, even though targets occupy as small as a few degrees of their visual fields. The excellent sensitivity to small target motion relies on a class of specialized neurons, called small target motion detectors (STMDs). However, existing STMD-based models are heavily dependent on visual contrast and perform poorly in complex natural environments, where small targets generally exhibit extremely low contrast against neighboring backgrounds. In this article, we develop an attention-and-prediction-guided visual system to overcome this limitation. The developed visual system comprises three main subsystems, namely: 1) an attention module; 2) an STMD-based neural network; and 3) a prediction module. The attention module searches for potential small targets in the predicted areas of the input image and enhances their contrast against a complex background. The STMD-based neural network receives the contrast-enhanced image and discriminates small moving targets from background false positives. The prediction module foresees future positions of the detected targets and generates a prediction map for the attention module. The three subsystems are connected in a recurrent architecture, allowing information to be processed sequentially to activate specific areas for small target detection. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness and superiority of the proposed visual system for detecting small, low-contrast moving targets against complex natural environments.
在复杂自然环境中进行小目标运动检测,对自主机器人来说是一项极具挑战性的任务。令人惊讶的是,昆虫的视觉系统已经进化到在检测配偶和追踪猎物方面非常高效,即使目标在它们的视野中所占角度小至几度。对小目标运动的出色敏感性依赖于一类特殊的神经元,称为小目标运动检测器(STMD)。然而,现有的基于STMD的模型严重依赖视觉对比度,在复杂自然环境中表现不佳,在这种环境中,小目标与相邻背景的对比度通常极低。在本文中,我们开发了一种注意力和预测引导的视觉系统来克服这一限制。所开发的视觉系统包括三个主要子系统,即:1)一个注意力模块;2)一个基于STMD的神经网络;3)一个预测模块。注意力模块在输入图像的预测区域中搜索潜在的小目标,并增强它们与复杂背景的对比度。基于STMD的神经网络接收对比度增强后的图像,并从背景误报中辨别出小的移动目标。预测模块预测检测到的目标的未来位置,并为注意力模块生成一个预测图。这三个子系统以循环架构连接,允许信息按顺序处理,以激活用于小目标检测的特定区域。在合成数据集和真实世界数据集上进行的大量实验证明了所提出的视觉系统在检测复杂自然环境中低对比度小移动目标方面的有效性和优越性。