Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
J Biol Chem. 2022 Jun;298(6):102019. doi: 10.1016/j.jbc.2022.102019. Epub 2022 May 6.
Arp2/3 complex nucleates branched actin filaments that drive processes like endocytosis and lamellipodial protrusion. WISH/DIP/SPIN90 (WDS) proteins form a class of Arp2/3 complex activators or nucleation promoting factors (NPFs) that, unlike WASP family NPFs, activate Arp2/3 complex without requiring preformed actin filaments. Therefore, activation of Arp2/3 complex by WDS proteins is thought to produce the initial actin filaments that seed branching nucleation by WASP-bound Arp2/3 complexes. However, whether activation of Arp2/3 complex by WDS proteins is important for the initiation of branched actin assembly in cells has not been directly tested. Here, we used structure-based point mutations of the Schizosaccharomyces pombe WDS protein Dip1 to test the importance of its Arp2/3-activating activity in cells. Six of thirteen Dip1 mutants caused severe defects in Arp2/3 complex activation in vitro, and we found a strong correlation between the ability of mutants to activate Arp2/3 complex and to rescue endocytic actin assembly defects caused by deleting Dip1. These data support a model in which Dip1 activates Arp2/3 complex to produce actin filaments that initiate branched actin assembly at endocytic sites. Dip1 mutants that synergized with WASP in activating Arp2/3 complex in vitro showed milder defects in cells compared to those that did not, suggesting that in cells the two NPFs may coactivate Arp2/3 complex to initiate actin assembly. Finally, the mutational data reveal important complementary electrostatic contacts at the Dip1-Arp2/3 complex interface and corroborate the previously proposed wedge model, which describes how Dip1 binding triggers structural changes that activate Arp2/3 complex.
Arp2/3 复合物引发分支肌动蛋白丝的形成,从而驱动胞吞作用和片状伪足伸出等过程。WISH/DIP/SPIN90(WDS)蛋白形成一类 Arp2/3 复合物激活因子或成核促进因子(NPF),与 WAVE 家族 NPF 不同,它们无需预先形成的肌动蛋白丝即可激活 Arp2/3 复合物。因此,WDS 蛋白激活 Arp2/3 复合物被认为会产生最初的肌动蛋白丝,这些丝为 WAVE 结合的 Arp2/3 复合物引发分支成核奠定基础。然而,WDS 蛋白激活 Arp2/3 复合物是否对细胞中分支肌动蛋白组装的起始很重要,尚未直接进行测试。在此,我们使用构效关系点突变的方法研究了丝状真菌裂殖酵母 WDS 蛋白 Dip1 的结构,以检测其在细胞中激活 Arp2/3 复合物的重要性。在 13 个 Dip1 突变体中,有 6 个在体外严重缺陷 Arp2/3 复合物的激活,并且我们发现突变体激活 Arp2/3 复合物的能力与其挽救因缺失 Dip1 而导致的胞吞作用肌动蛋白组装缺陷的能力之间存在很强的相关性。这些数据支持以下模型:Dip1 激活 Arp2/3 复合物以产生肌动蛋白丝,从而在胞吞作用部位引发分支肌动蛋白组装。在体外与 WAVE 协同激活 Arp2/3 复合物的 Dip1 突变体与那些不协同的突变体相比,在细胞中的缺陷要轻一些,这表明在细胞中,这两种 NPF 可能共同激活 Arp2/3 复合物以起始肌动蛋白组装。最后,突变数据揭示了 Dip1-Arp2/3 复合物界面处重要的补充静电接触,并证实了先前提出的楔形模型,该模型描述了 Dip1 结合如何引发结构变化以激活 Arp2/3 复合物。