Suppr超能文献

焦磷酸解对生产性和流产性转录起始的逐步调控。

Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.

机构信息

Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, United States.

Biophysics Program, University of Wisconsin - Madison, Madison, WI 53706, United States.

出版信息

J Mol Biol. 2022 Jul 15;434(13):167621. doi: 10.1016/j.jmb.2022.167621. Epub 2022 May 6.

Abstract

An understanding of the kinetics and mechanism of bacterial transcription initiation is needed to understand regulation of gene expression and advance fields from antibiotic discovery to promoter design. The step-by-step forward kinetics and mechanism of initiation and RNA-DNA hybrid growth, made irreversible by omitting pyrophosphate (PPi) byproduct, were determined recently for E. coli RNA polymerase (RNAP)-λP promoter complexes. Strong position-dependences of overall rate constants (k/K analogs) for each nucleotide-addition step were observed because of coupling of hybrid growth to disruption of promoter contacts, bubble closing, and RNAP escape. Here we investigate reversal of these steps (pyrophosphorolysis) at PPi concentrations ([PPi]) found in exponentially-growing cells. We quantify [PPi] effects on the amount and rate of synthesis of long (>10-mer, post-escape) and short (stalled, abortive) RNA to determine how PPi regulates initiation. Physiological [PPi] makes uridine incorporation and some other initiation steps significantly reversible. Physiological [PPi] reduces the fraction of RNAP-promoter complexes that productively initiate and the rate of RNA synthesis per productive complex, while increasing the fraction of complexes that abortively initiate, affecting abortive rates, and shifting the abortive-product distribution to shorter RNAs. Pyrophosphorolysis rates for some initiation complexes are orders of magnitude larger than for removal of the same nucleotide from elongation complexes because of the strong bias toward the pre-translocated state in initiation, and exhibit even stronger dependences on nucleotide identity (pyrimidine ≫ purine). Because cytoplasmic [PPi] is much higher in exponential-phase than stationary-phase cells, these [PPi] effects on initiation rates and amounts of RNA synthesis must be physiologically-relevant.

摘要

为了理解基因表达的调控并推动从抗生素发现到启动子设计等领域的发展,我们需要了解细菌转录起始的动力学和机制。最近,已经确定了大肠杆菌 RNA 聚合酶(RNAP)-λP 启动子复合物的起始和 RNA-DNA 杂交生长的逐步正向动力学和机制,该过程通过省略焦磷酸(PPi)副产物而不可逆。由于杂交生长与启动子接触的破坏、泡关闭和 RNAP 逃逸的耦合,每个核苷酸添加步骤的总速率常数(k/K 类似物)的位置依赖性很强。在这里,我们研究了在细胞指数生长期中发现的 PPi 浓度下这些步骤(焦磷酸水解)的逆转。我们量化了 [PPi] 对长(>10 个核苷酸,出泡后)和短(stalled,夭折)RNA 合成量和速率的影响,以确定 PPi 如何调节起始。生理 [PPi] 使尿嘧啶掺入和其他一些起始步骤具有显著的可逆性。生理 [PPi] 降低了具有生产性起始的 RNAP-启动子复合物的分数和每个生产性复合物的 RNA 合成速率,同时增加了夭折起始复合物的分数,影响夭折率,并将夭折-生产分布转移到更短的 RNA 上。由于起始中强烈偏向于预迁移状态,一些起始复合物的焦磷酸水解速率比从延伸复合物中去除相同核苷酸的速率大几个数量级,并且对核苷酸身份(嘧啶>嘌呤)的依赖性更强。由于指数期细胞中的细胞质 [PPi] 比静止期细胞高得多,因此 [PPi] 对起始速率和 RNA 合成量的影响必须具有生理相关性。

相似文献

1
Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.
J Mol Biol. 2022 Jul 15;434(13):167621. doi: 10.1016/j.jmb.2022.167621. Epub 2022 May 6.
2
RNA Polymerase: Step-by-Step Kinetics and Mechanism of Transcription Initiation.
Biochemistry. 2019 May 7;58(18):2339-2352. doi: 10.1021/acs.biochem.9b00049. Epub 2019 Apr 19.
4
Mechanism of transcription initiation and promoter escape by . RNA polymerase.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3032-E3040. doi: 10.1073/pnas.1618675114. Epub 2017 Mar 27.
5
The Role of Pyrophosphorolysis in the Initiation-to-Elongation Transition by E. coli RNA Polymerase.
J Mol Biol. 2019 Jun 28;431(14):2528-2542. doi: 10.1016/j.jmb.2019.04.020. Epub 2019 Apr 26.
8
Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
J Mol Biol. 2014 Dec 12;426(24):3973-3984. doi: 10.1016/j.jmb.2014.10.005. Epub 2014 Oct 13.
9
Structures illustrate step-by-step mitochondrial transcription initiation.
Nature. 2023 Oct;622(7984):872-879. doi: 10.1038/s41586-023-06643-y. Epub 2023 Oct 11.
10
Transient state kinetics of transcription elongation by T7 RNA polymerase.
J Biol Chem. 2006 Nov 24;281(47):35677-85. doi: 10.1074/jbc.M608180200. Epub 2006 Sep 27.

引用本文的文献

1
Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells.
Nat Nanotechnol. 2025 May;20(5):664-671. doi: 10.1038/s41565-025-01879-3. Epub 2025 Mar 17.
2
Understanding the impact of transcription byproducts and contaminants.
Front Mol Biosci. 2024 Jul 10;11:1426129. doi: 10.3389/fmolb.2024.1426129. eCollection 2024.
3
The A12.2 Subunit Plays an Integral Role in Pyrophosphate Release of RNA Polymerase I.
J Mol Biol. 2023 Aug 1;435(15):168186. doi: 10.1016/j.jmb.2023.168186. Epub 2023 Jun 22.

本文引用的文献

1
Pyrophosphate and Irreversibility in Evolution, or why PP Is Not an Energy Currency and why Nature Chose Triphosphates.
Front Microbiol. 2021 Oct 6;12:759359. doi: 10.3389/fmicb.2021.759359. eCollection 2021.
2
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.
4
Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in .
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2106388118.
5
Structural basis of ribosomal RNA transcription regulation.
Nat Commun. 2021 Jan 22;12(1):528. doi: 10.1038/s41467-020-20776-y.
7
Stepwise Promoter Melting by Bacterial RNA Polymerase.
Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
8
RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5801-5809. doi: 10.1073/pnas.1920747117. Epub 2020 Mar 3.
9
The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase.
J Mol Biol. 2019 Sep 20;431(20):3975-4006. doi: 10.1016/j.jmb.2019.05.042. Epub 2019 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验