Suppr超能文献

基于深度学习分类和语言生成模型的股骨近端骨折放射学报告生成。

Radiology report generation for proximal femur fractures using deep classification and language generation models.

机构信息

University of Twente, Enschede, the Netherlands.

University of Twente, Enschede, the Netherlands; University of Duisburg-Essen, Essen, Germany.

出版信息

Artif Intell Med. 2022 Jun;128:102281. doi: 10.1016/j.artmed.2022.102281. Epub 2022 Mar 26.

Abstract

Proximal femur fractures represent a major health concern, and substantially contribute to the morbidity of elderly. Correct classification and diagnosis of hip fractures has a significant impact on mortality, costs and hospital stay. In this paper, we present a method and empirical validation for automatic subclassification of proximal femur fractures and Dutch radiological report generation that does not rely on manually curated data. The fracture classification model was trained on 11,000 X-ray images obtained from 5000 electronic health records in a general hospital. To generate the Dutch reports, we first trained an embedding model on 20,000 radiological reports of pelvic region fractures, and used its embeddings in the report generation model. We trained the report generation model on the 5000 radiological reports associated with the fracture cases. Our report generation model is on par with state-of-the-art in terms of BLEU and ROUGE scores. This is promising, because in contrast to those earlier works, our approach does not require manual preprocessing of either images or the reports. This boosts the applicability of automatic clinical report generation in practice. A quantitative and qualitative user study among medical students found no significant difference in provenance of real and generated reports. A qualitative, in-depth clinical relevance study with medical domain experts showed that from a human perspective the quality of the generated reports approximates the quality of the original reports and highlights challenges in creating sufficiently detailed and versatile training data for automatic radiology report generation.

摘要

股骨近端骨折是一个主要的健康问题,极大地增加了老年人的发病率。正确分类和诊断髋部骨折对死亡率、成本和住院时间有重大影响。在本文中,我们提出了一种方法和经验验证,用于自动对股骨近端骨折进行细分,并生成无需人工整理数据的荷兰语放射报告。骨折分类模型在一家综合医院的 5000 份电子病历中获得的 11000 张 X 光图像上进行了训练。为了生成荷兰语报告,我们首先在 20000 份骨盆区域骨折的放射报告上训练了一个嵌入模型,并在报告生成模型中使用其嵌入。我们在与骨折病例相关的 5000 份放射报告上训练了报告生成模型。我们的报告生成模型在 BLEU 和 ROUGE 分数方面与最先进的技术相当。这很有希望,因为与早期的这些工作不同,我们的方法不需要对图像或报告进行手动预处理。这提高了自动临床报告生成在实践中的适用性。一项针对医学生的定量和定性用户研究发现,真实报告和生成报告的来源没有显著差异。一项与医学领域专家进行的深入临床相关性研究表明,从人类的角度来看,生成报告的质量接近原始报告的质量,并突出了为自动放射报告生成创建足够详细和通用的训练数据的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验