Suppr超能文献

基于 AO/OTA 分类的更快 R-CNN-BO 方法从 CT 图像中自动检测多类股骨转子间骨折。

Automatic multi-class intertrochanteric femur fracture detection from CT images based on AO/OTA classification using faster R-CNN-BO method.

机构信息

Jeonbuk National University, Research Institute of Clinical Medicine, Department of Orthopedic Surgery, Jeonju, South Korea.

Sungkyunkwan University, College of Biotechnology and Bioengineering, Suwon, South Korea.

出版信息

J Appl Biomed. 2020 Dec;18(4):97-105. doi: 10.32725/jab.2020.013. Epub 2020 Sep 22.

Abstract

Intertrochanteric (IT) femur fractures are the most common fractures in elderly people, and they lead to significant morbidity, mortality, and reduced quality of life. The different types of fractures require a careful definition to ensure accurate surgical planning and reduce the operation time, healing time, and number of surgical failures. In this study, a deep learning-based automatic multi-class IT fracture detection model was developed using computed tomography (CT) images and based on the AO/OTA classification method. The original CT image was resized and rearranged according to the fracture location and an unsharp masking filter was applied. A multi-class classification of nine different types of IT fractures and no fracture was performed using the faster regional-convolutional neural network (R-CNN). Bayesian optimization was also implemented to determine the optimal hyperparameter values for the faster R-CNN algorithm. In our proposed model, IT fractures classified into two classes showed an average accuracy of 0.97 ± 0.02, which was 0.90 ± 0.02 when classified into ten classes. Additionally, the detected region of interest from our proposed model showed minimum root mean square error and intersection over union values of 16.34 ± 47.01 pixels and 0.87 ± 0.12, respectively. In the future, our proposed automatic multi-class IT femur fracture detection model could allow clinicians to identify the fracture region and diagnose different types of femur fractures faster and more accurately. This will increase the probability of correct surgical treatment and minimize postoperative complications.

摘要

股骨转子间骨折是老年人最常见的骨折类型,会导致较高的发病率、死亡率和生活质量下降。不同类型的骨折需要仔细定义,以确保准确的手术规划,并减少手术时间、愈合时间和手术失败的次数。在这项研究中,我们使用计算机断层扫描(CT)图像并基于 AO/OTA 分类方法,开发了一种基于深度学习的自动多类股骨转子间骨折检测模型。根据骨折位置对原始 CT 图像进行了重新调整和排列,并应用了非锐化掩模滤波器。使用更快的区域卷积神经网络(R-CNN)对九种不同类型的股骨转子间骨折和无骨折进行了多类分类。还实施了贝叶斯优化,以确定更快的 R-CNN 算法的最佳超参数值。在我们提出的模型中,将股骨转子间骨折分为两类时,平均准确率为 0.97 ± 0.02,分为十类时平均准确率为 0.90 ± 0.02。此外,我们提出的模型的感兴趣区域检测的均方根误差和交并比分别为 16.34 ± 47.01 像素和 0.87 ± 0.12。在未来,我们提出的自动多类股骨转子间骨折检测模型可以使临床医生更快、更准确地识别骨折区域和诊断不同类型的股骨骨折。这将提高正确手术治疗的概率,并最大限度地减少术后并发症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验