Suppr超能文献

剖宫产后试产的女性中存在种族和民族差异:使用和不使用患者种族/民族信息的 VBAC 计算器的表现。

Racial and Ethnic Disparities Among Women Undergoing a Trial of Labor After Cesarean Delivery: Performance of the VBAC Calculator with and without Patients' Race/Ethnicity.

机构信息

Icahn School of Medicine at Mount Sinai Hospital, New York, NY, 10029, USA.

出版信息

Reprod Sci. 2022 Jul;29(7):2030-2038. doi: 10.1007/s43032-022-00959-2. Epub 2022 May 9.

Abstract

The Maternal Fetal Medicine Units Network (MFMU) vaginal birth after cesarean (VBAC) calculator is a clinical tool designed to predict trial of labor after cesarean delivery (TOLAC) success. The calculator has come under scrutiny for its inclusion of race and ethnicity, which systematically predicts a lower likelihood of success for patients who identify as African American or Hispanic. We hypothesized that the calculator would predict VBAC more accurately without the use of race or ethnicity. A retrospective chart review including all patients undergoing TOLAC from 2016 to 2019 was conducted. A multivariate logistic regression was used to compare one model that utilizes the original variables in predicting VBAC (model 1) and another that uses the same variables except for race and ethnicity (model 2). In model 1, race and ethnicity were the only variables not associated with the probability of successful TOLAC (p = 0.065). The area under the curve (AUC) for models 1 and 2 were 0.77 and 0.78, respectively. There was not a statistically significant difference between the predictive abilities of the two models (p = 0.40). Rates of PPH (p = 0.001), abruption (p = 0.04), intra-amniotic infection (p < 0.0001), and other postpartum complications (p = 0.005) differed significantly by race and ethnicity. The use of race and ethnicity did not contribute to the accuracy of VBAC prediction. The use of race and ethnicity in this predictive model should be omitted to prevent inherent bias and discrimination. There were also significant racial and ethnic differences in overall postpartum complication rates.

摘要

母体胎儿医学单位网络(MFMU)剖宫产术后阴道分娩(VBAC)计算器是一种临床工具,旨在预测剖宫产术后试产(TOLAC)的成功率。该计算器因其包含种族和民族而受到审查,因为它系统地预测了黑人或西班牙裔患者成功的可能性较低。我们假设该计算器在不使用种族或民族的情况下会更准确地预测 VBAC。对 2016 年至 2019 年期间接受 TOLAC 的所有患者进行了回顾性图表审查。使用多元逻辑回归比较了一种使用原始变量预测 VBAC 的模型(模型 1)和另一种不使用种族和民族的相同变量的模型(模型 2)(p = 0.065)。模型 1 中,种族和民族是唯一与 TOLAC 成功概率无关的变量(p = 0.065)。模型 1 和 2 的曲线下面积(AUC)分别为 0.77 和 0.78。两个模型的预测能力之间没有统计学差异(p = 0.40)。PPH(p = 0.001)、胎盘早剥(p = 0.04)、羊膜内感染(p < 0.0001)和其他产后并发症(p = 0.005)的发生率因种族和民族而异。种族和民族的使用并没有提高 VBAC 预测的准确性。在这种预测模型中使用种族和民族应该被省略,以防止固有的偏见和歧视。总体产后并发症发生率也存在显著的种族和民族差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验