Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
BMC Ecol Evol. 2022 May 9;22(1):59. doi: 10.1186/s12862-022-02014-9.
Members of Euglenozoa (Discoba) are known for unorthodox rDNA organization. In Euglenida rDNA is located on extrachromosomal circular DNA. In Kinetoplastea and Euglenida the core of the large ribosomal subunit, typically formed by the 28S rRNA, consists of several smaller rRNAs. They are the result of the presence of additional internal transcribed spacers (ITSs) in the rDNA. Diplonemea is the third of the main groups of Euglenozoa and its members are known to be among the most abundant and diverse protists in the oceans. Despite that, the rRNA of only one diplonemid species, Diplonema papillatum, has been examined so far and found to exhibit continuous 28S rRNA. Currently, the rDNA organization has not been researched for any diplonemid. Herein we investigate the structure of rRNA genes in classical (Diplonemidae) and deep-sea diplonemids (Eupelagonemidae), representing the majority of known diplonemid diversity. The results fill the gap in knowledge about diplonemid rDNA and allow better understanding of the evolution of the fragmented structure of the rDNA in Euglenozoa.
We used available genomic (culture and single-cell) sequencing data to assemble complete or almost complete rRNA operons for three classical and six deep-sea diplonemids. The rDNA sequences acquired for several euglenids and kinetoplastids were used to provide the background for the analysis. In all nine diplonemids, 28S rRNA seems to be contiguous, with no additional ITSs detected. Similarly, no additional ITSs were detected in basal prokinetoplastids. However, we identified five additional ITSs in the 28S rRNA of all analysed metakinetoplastids, and up to twelve in euglenids. Only three of these share positions, and they cannot be traced back to their common ancestor.
Presented results indicate that independent origin of additional ITSs in euglenids and kinetoplastids seems to be the most likely. The reason for such unmatched fragmentation remains unknown, but for some reason euglenozoan ribosomes appear to be prone to 28S rRNA fragmentation.
变形虫(Discoba)的成员以非常规的 rDNA 组织而闻名。在眼虫目中,rDNA 位于染色体外的环状 DNA 上。在动基体目和眼虫目中,核糖体大亚基的核心通常由 28S rRNA 组成,由几个较小的 rRNAs 组成。它们是 rDNA 中存在额外的内部转录间隔区(ITSs)的结果。双滴虫是变形虫的第三个主要群体,其成员被认为是海洋中最丰富和最多样化的原生动物之一。尽管如此,迄今为止,仅对一种双滴虫物种 Diplonema papillatum 的 rRNA 进行了检查,发现其存在连续的 28S rRNA。目前,尚未对任何双滴虫进行 rDNA 组织研究。本文中,我们研究了经典(双滴虫科)和深海双滴虫(Eupelagonemidae)的 rRNA 基因结构,它们代表了已知双滴虫多样性的大部分。研究结果填补了双滴虫 rDNA 知识空白,有助于更好地理解 Euglenozoa 中 rDNA 片段化结构的进化。
我们利用现有的基因组(培养和单细胞)测序数据,为三种经典双滴虫和六种深海双滴虫组装了完整或几乎完整的 rRNA 操纵子。为了进行分析,还使用了从几种眼虫和动基体目获得的 rDNA 序列作为背景。在所有 9 种双滴虫中,28S rRNA 似乎是连续的,没有检测到额外的 ITSs。同样,在基础动基体目原生动物中也没有检测到额外的 ITSs。然而,我们在所有分析的后生动物中鉴定出 28S rRNA 中有五个额外的 ITSs,在眼虫目中多达十二个。其中只有三个具有相同的位置,而且无法追溯到它们的共同祖先。
目前的结果表明,眼虫和动基体目中额外 ITSs 的独立起源似乎是最有可能的。这种不匹配的片段化的原因尚不清楚,但由于某种原因,变形虫核糖体似乎容易发生 28S rRNA 片段化。