Suppr超能文献

致病细菌中的二羟酸脱水酶:用于对抗抗生素耐药性的新兴药物靶点。

Dihydroxy-Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance.

机构信息

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia.

Chair of Chemistry of Biogenic resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.

出版信息

Chemistry. 2022 Aug 4;28(44):e202200927. doi: 10.1002/chem.202200927. Epub 2022 Jun 16.

Abstract

There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic-resistant superbugs. Enzymes of the branched-chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti-microbial drug development. Dihydroxy-acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe-S cluster for catalytic activity and has recently also gained attention as a catalyst in cell-free enzyme cascades. Two types of Fe-S clusters have been identified in DHADs, i.e. [2Fe-2S] and [4Fe-4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000-fold increase with k as high as ∼6.7 s ). Inductively-coupled plasma-optical emission spectroscopy (ICP-OES) measurements are consistent with the presence of [4Fe-4S] clusters in both enzymes. N-isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (K =7.8 and 51.6 μM, respectively) and CjDHAD (K =32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti-microbial chemotherapeutics.

摘要

目前全球急需开发新型疗法来应对各种抗生素耐药超级细菌的出现。支链氨基酸(BCAA)生物合成途径的酶是新型抗菌药物开发的一个有吸引力的靶点。二羟酸脱水酶(DHAD)是 BCAA 生物合成途径的第三个酶。它依赖于 Fe-S 簇进行催化活性,最近也因其在无细胞酶级联反应中的催化剂而受到关注。DHAD 中已鉴定出两种类型的 Fe-S 簇,即 [2Fe-2S] 和 [4Fe-4S],后者在存在氧气时更容易降解。在这里,我们从细菌人类病原体金黄色葡萄球菌和空肠弯曲菌中鉴定了两种 DHAD(SaDHAD 和 CjDHAD)。纯化的 SaDHAD 和 CjDHAD 几乎没有活性,但可以在体外可逆地重新构成活性(最高可达约 19000 倍,k 高达约 6.7 s)。电感耦合等离子体-原子发射光谱(ICP-OES)测量结果与两种酶中均存在 [4Fe-4S] 簇一致。N-异丙烯基草酰羟肟酸(IpOHA)和 Asperteric 酸都是 SaDHAD(K =7.8 和 51.6 μM,分别)和 CjDHAD(K =32.9 和 35.1 μM,分别)的有效抑制剂。因此,这些化合物为开发新型抗菌化学疗法提供了合适的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512f/9543379/8b14fb1d082d/CHEM-28-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验