Suppr超能文献

使用不锈钢粉末的粘结剂喷射增材制造中双峰粒度分布的反应分子动力学研究。

A reactive molecular dynamics study of bi-modal particle size distribution in binder-jetting additive manufacturing using stainless-steel powders.

作者信息

Gao Yawei, Clares Ana Paula, Manogharan Guha, van Duin Adri C T

机构信息

Department of Mechanical Engineering, Pennsylvania State University, University Park, 16802, PA, USA.

Additive Manufacturing and Design Graduate Program, Pennsylvania State University, University Park, 16802, PA, USA.

出版信息

Phys Chem Chem Phys. 2022 May 18;24(19):11603-11615. doi: 10.1039/d2cp00630h.

Abstract

Binder-jetting is a powder-bed-based additive manufacturing (AM) process that is uniquely different from other powder-bed "fusion" metal AM technologies because it is a binder-based consolidation process similar to powder metallurgy "green" part and offers a larger selection of materials and part design capabilities. In order to improve a final part's density and achieve desired mechanical properties, binder-jetting usually requires lengthy post-processing steps such as curing, sintering, and infiltration. The role of particle size distribution in this process has been demonstrated to have a major impact. When comparing different distributions such as mono- and bi-modal sizes, the latter, consisting of a mix between coarser and finer particles, has shown to increase packing density and decrease porosity for a printed part. In this present work, we employ ReaxFF reactive force-field-based molecular dynamics (MD) simulations to study the atomistic level mechanism of binder-jetting using a bi-modal austenitic stainless-steel powder mixture. In addition, we compare the fracture process of the bi-modal powder mixture system with that of a system with mono-modal particle size, aiming to understand how the finer particles in the bi-modal powder mixture contribute to raising rupture strength. The MD simulation results show that the energy barriers after curing and sintering in the bi-modal particle system increase by 42.9% and 40.9%, respectively than in the mono-modal particle system. Moreover, the analysis of chemical composition and microstructure shows that iron is dominantly oxidized by oxygen atoms rather than hydroxyl radicals. Besides, the finer particle is subject to internal oxidation during sintering because its iron core melts. In contrast, the iron core of the coarser particle remains crystalline. Additionally, the statistical analysis of bonding oxygen atoms for each reference iron atom indicates that both particles have a small ratio of iron oxidized to Fe(II) but only slowly oxidizes to Fe(III) in the binder-jetting process. The coarser particle has a lot of non-oxidized iron atoms, while the majority of iron atoms in the finer particle bond with one oxygen atom during the time scale of our MD simulations. Furthermore, de-hydroxylation and oxygen inward diffusion lead to the reduction of chromium cations throughout sintering. The original findings of this study provide a nanoscale explanation for the mechanical property improvement using a bi-modal powder mixture. Moreover, the study of chemical composition and microstructure also contributes to improving the chemical properties of binder-jetting products.

摘要

粘结剂喷射是一种基于粉末床的增材制造(AM)工艺,它与其他粉末床“熔合”金属增材制造技术有独特的不同,因为它是一种基于粘结剂的固结工艺,类似于粉末冶金的“生坯”零件,并提供了更多的材料选择和零件设计能力。为了提高最终零件的密度并实现所需的机械性能,粘结剂喷射通常需要漫长的后处理步骤,如固化、烧结和渗透。已证明粒度分布在该过程中具有重大影响。当比较不同的分布,如单峰和双峰尺寸时,后者由较粗和较细颗粒的混合组成,已显示出可提高打印零件的堆积密度并降低孔隙率。在本工作中,我们采用基于ReaxFF反应力场的分子动力学(MD)模拟来研究使用双峰奥氏体不锈钢粉末混合物的粘结剂喷射的原子级机制。此外,我们将双峰粉末混合物系统的断裂过程与单峰粒度系统的断裂过程进行比较,旨在了解双峰粉末混合物中的较细颗粒如何有助于提高断裂强度。MD模拟结果表明,双峰颗粒系统中固化和烧结后的能垒分别比单峰颗粒系统增加了42.9%和40.9%。此外,化学成分和微观结构分析表明,铁主要被氧原子氧化,而不是被羟基自由基氧化。此外,较细颗粒在烧结过程中会发生内部氧化,因为其铁芯会熔化。相比之下,较粗颗粒的铁芯保持结晶状态。此外,对每个参考铁原子的键合氧原子的统计分析表明,在粘结剂喷射过程中,两种颗粒被氧化成Fe(II)的铁的比例都很小,但只会缓慢氧化成Fe(III)。较粗颗粒有许多未氧化的铁原子,而在我们MD模拟的时间尺度内,较细颗粒中的大多数铁原子与一个氧原子键合。此外,脱羟基和氧向内扩散导致整个烧结过程中铬阳离子的减少。本研究的原始发现为使用双峰粉末混合物提高机械性能提供了纳米级解释。此外,化学成分和微观结构的研究也有助于改善粘结剂喷射产品的化学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验