Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China.
Eur J Clin Pharmacol. 2022 Aug;78(8):1261-1272. doi: 10.1007/s00228-021-03215-9. Epub 2022 May 10.
Intracellular exposure of tacrolimus (TAC) may be a better marker of therapeutic effect than whole blood exposure. We aimed to evaluate the influence of genetic polymorphism on the pharmacokinetics of TAC in peripheral blood mononuclear cells (PBMCs) and develop limited sampling strategy (LSS) models to estimate the area under the curve (AUC) in the PBMC of Chinese renal transplant patients.
Ten blood samples of each of the 23 renal transplant patients were collected 0-12h after 14 (10-18) days of TAC administration. PBMCs were separated and quantified. The TAC level in PBMCs was determined, and pharmacokinetic parameters were estimated by noncompartmental study. The AUC of TAC in whole blood was estimated by Bayesian approach based on a population pharmacokinetic model established in 65 renal transplant patients. The influence of CYP3A5 and ABCB1 genotypes on exposure was estimated. By applying multiple stepwise linear regression analysis, LSS equations for TAC AUC in the PMBC of renal transplant patients were established, and the bias and precision of various equations were identified and compared.
We found a modest correlation between TAC exposure in whole blood and PBMC (r = 0.5260). Patients with the CYP3A5 6986GG genotype had a higher AUC in PBMCs than those with the 6986 AA or GA genotype (P = 0.026). Conversely, patients with the ABCB1 3435TT genotype had a higher AUC in PBMC than those with the 3435 CC and CT genotypes (P = 0.046). LSS models with 1-4 blood time points were established (r = 0.570-0.989). The best model for predicting TAC AUC was C-C-C-C (r = 0.989). The model with C-C (r = 0.849) can be used for outpatients who need monitoring to be performed in a short period.
The CYP3A5 and ABCB1 genotypes impact TAC exposure in PBMCs, which may further alter the effects of TAC. The LSS model consisting of 2-4 time points is an effective approach for estimating full TAC AUC in Chinese renal transplant patients. This approach may provide convenience and the possibility for clinical monitoring of TAC intracellular exposure.
与全血暴露相比,他克莫司(TAC)的细胞内暴露可能是治疗效果的更好标志物。我们旨在评估遗传多态性对肾移植患者外周血单个核细胞(PBMC)中 TAC 药代动力学的影响,并开发有限采样策略(LSS)模型来估计中国肾移植患者 PBMC 的曲线下面积(AUC)。
在 TAC 给药后 14(10-18)天的 0-12 小时内,收集了 23 名肾移植患者的每个患者的 10 份血液样本。分离并定量 PBMC。测定 PBMC 中的 TAC 水平,并通过非房室研究估算药代动力学参数。基于在 65 名肾移植患者中建立的群体药代动力学模型,采用贝叶斯法估算全血 TAC 的 AUC。估计 CYP3A5 和 ABCB1 基因型对暴露的影响。通过应用逐步线性回归分析,建立了肾移植患者 PBMC 中 TAC AUC 的 LSS 方程,并确定和比较了各种方程的偏差和精度。
我们发现全血和 PBMC 中的 TAC 暴露之间存在适度的相关性(r=0.5260)。与 CYP3A5 6986GG 基因型的患者相比,6986AA 或 GA 基因型的患者 PBMC 中的 AUC 更高(P=0.026)。相反,与 3435CC 和 CT 基因型的患者相比,ABCB1 3435TT 基因型的患者 PBMC 中的 AUC 更高(P=0.046)。建立了 1-4 个采血时间点的 LSS 模型(r=0.570-0.989)。预测 TAC AUC 的最佳模型为 C-C-C-C(r=0.989)。模型 C-C(r=0.849)可用于需要在短时间内进行监测的门诊患者。
CYP3A5 和 ABCB1 基因型影响 PBMC 中的 TAC 暴露,这可能进一步改变 TAC 的作用。由 2-4 个时间点组成的 LSS 模型是估计中国肾移植患者全 TAC AUC 的有效方法。该方法可为 TAC 细胞内暴露的临床监测提供便利和可能性。