Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2022 Jun 8;22(11):4608-4615. doi: 10.1021/acs.nanolett.1c04274. Epub 2022 May 10.
Monolayer hexagonal boron nitride (hBN) has attracted interest as an ultrathin tunnel barrier or environmental protection layer. Recently, wafer-scale hBN growth on Cu(111) was developed for semiconductor chip applications. For basic research and technology, understanding how hBN perturbs underlying electronically active layers is critical. Encouragingly, hBN/Cu(111) has been shown to preserve the Cu(111) surface state (SS), but it was unknown how tunneling into this SS through hBN varies spatially. Here, we demonstrate that the Cu(111) SS under wafer-scale hBN is homogeneous in energy and spectral weight over nanometer length scales and across atomic terraces. In contrast, a new spectral feature─not seen on bare Cu(111)─varies with atomic registry and shares the spatial periodicity of the hBN/Cu(111) moiré. This work demonstrates that, for some 2D electron systems, an hBN overlayer can act as a protective yet remarkably transparent window on fragile low-energy electronic structure below.
单层六方氮化硼 (hBN) 因其作为超薄隧道势垒或环境保护层而受到关注。最近,为了半导体芯片应用,在 Cu(111) 上实现了晶圆级 hBN 生长。对于基础研究和技术而言,了解 hBN 如何干扰底层的电子活性层至关重要。令人鼓舞的是,hBN/Cu(111) 被证明可以保留 Cu(111) 表面态 (SS),但尚不清楚通过 hBN 进入该 SS 的隧道电流如何在空间上变化。在这里,我们证明了在晶圆级 hBN 下,Cu(111) SS 在能量和谱权重上具有纳米级和原子台阶上的均匀性。相比之下,一个新的谱特征——在裸露的 Cu(111) 上没有看到——随原子排列而变化,并与 hBN/Cu(111) 莫尔的空间周期性相关。这项工作表明,对于某些 2D 电子系统,hBN 覆盖层可以作为脆弱的低能电子结构下方的保护层,同时又具有惊人的透明性。