Suppr超能文献

具有未知导数的动态摩尔-彭罗斯逆:梯度神经网络方法。

Dynamic Moore-Penrose Inversion With Unknown Derivatives: Gradient Neural Network Approach.

作者信息

Zhang Yinyan, Zhang Jilian, Weng Jian

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10919-10929. doi: 10.1109/TNNLS.2022.3171715. Epub 2023 Nov 30.

Abstract

Finding dynamic Moore-Penrose inverses (DMPIs) in real-time is a challenging problem due to the time-varying nature of the inverse. Traditional numerical methods for static Moore-Penrose inverse are not efficient for calculating DMPIs and are restricted by serial processing. The current state-of-the-art method for finding DMPIs is called the zeroing neural network (ZNN) method, which requires that the time derivative of the associated matrix is available all the time during the solution process. However, in practice, the time derivative of the associated dynamic matrix may not be available in a real-time manner or be subject to noises caused by differentiators. In this article, we propose a novel gradient-based neural network (GNN) method for computing DMPIs, which does not need the time derivative of the associated dynamic matrix. In particular, the neural state matrix of the proposed GNN converges to the theoretical DMPI in finite time. The finite-time convergence is kept by simply setting a large parameter when there are additive noises in the implementation of the GNN model. Simulation results demonstrate the efficacy and superiority of the proposed GNN method.

摘要

由于逆矩阵的时变特性,实时求解动态摩尔 - 彭罗斯逆矩阵(DMPI)是一个具有挑战性的问题。传统的静态摩尔 - 彭罗斯逆矩阵的数值方法在计算DMPI时效率不高,并且受到串行处理的限制。当前求解DMPI的最先进方法是归零神经网络(ZNN)方法,该方法要求在求解过程中始终能够获取相关矩阵的时间导数。然而,在实际应用中,相关动态矩阵的时间导数可能无法实时获取,或者会受到微分器产生的噪声影响。在本文中,我们提出了一种新颖的基于梯度的神经网络(GNN)方法来计算DMPI,该方法不需要相关动态矩阵的时间导数。特别地,所提出的GNN的神经状态矩阵在有限时间内收敛到理论DMPI。当GNN模型实现中存在加性噪声时,通过简单地设置一个大参数来保持有限时间收敛。仿真结果证明了所提出的GNN方法的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验