Suppr超能文献

用于从单细胞转录组数据中识别细胞类型的半监督深度学习

Semi-Supervised Deep Learning for Cell Type Identification From Single-Cell Transcriptomic Data.

作者信息

Dong Xishuang, Chowdhury Shanta, Victor Uboho, Li Xiangfang, Qian Lijun

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1492-1505. doi: 10.1109/TCBB.2022.3173587. Epub 2023 Apr 3.

Abstract

Cell type identification from single-cell transcriptomic data is a common goal of single-cell RNA sequencing (scRNAseq) data analysis. Deep neural networks have been employed to identify cell types from scRNAseq data with high performance. However, it requires a large mount of individual cells with accurate and unbiased annotated types to train the identification models. Unfortunately, labeling the scRNAseq data is cumbersome and time-consuming as it involves manual inspection of marker genes. To overcome this challenge, we propose a semi-supervised learning model "SemiRNet" to use unlabeled scRNAseq cells and a limited amount of labeled scRNAseq cells to implement cell identification. The proposed model is based on recurrent convolutional neural networks (RCNN), which includes a shared network, a supervised network and an unsupervised network. The proposed model is evaluated on two large scale single-cell transcriptomic datasets. It is observed that the proposed model is able to achieve encouraging performance by learning on the very limited amount of labeled scRNAseq cells together with a large number of unlabeled scRNAseq cells.

摘要

从单细胞转录组数据中识别细胞类型是单细胞RNA测序(scRNAseq)数据分析的一个常见目标。深度神经网络已被用于从scRNAseq数据中高效识别细胞类型。然而,它需要大量具有准确且无偏差注释类型的单个细胞来训练识别模型。不幸的是,标记scRNAseq数据既繁琐又耗时,因为这涉及到对标记基因的人工检查。为了克服这一挑战,我们提出了一种半监督学习模型“SemiRNet”,以使用未标记的scRNAseq细胞和有限数量的标记scRNAseq细胞来实现细胞识别。所提出的模型基于循环卷积神经网络(RCNN),它包括一个共享网络、一个监督网络和一个无监督网络。所提出的模型在两个大规模单细胞转录组数据集上进行了评估。结果表明,通过在非常有限数量的标记scRNAseq细胞以及大量未标记scRNAseq细胞上进行学习,所提出的模型能够取得令人鼓舞的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验