Edwards Paul T, Saunders Lucy K, Grinter David C, Ferrer Pilar, Held Georg, Shotton Elizabeth J, Schroeder Sven L M
School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K.
J Phys Chem A. 2022 May 19;126(19):2889-2898. doi: 10.1021/acs.jpca.2c00439. Epub 2022 May 10.
It is important to be able to identify the precise position of H-atoms in hydrogen bonding interactions to fully understand the effects on the structure and properties of organic crystals. Using a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) quantum chemistry calculations, we demonstrate the sensitivity of core-level X-ray spectroscopy to the precise H-atom position within a donor-proton-acceptor system. Exploiting this sensitivity, we then combine the predictive power of DFT with the experimental NEXAFS, confirming the H-atom position identified using single-crystal X-ray diffraction (XRD) techniques more easily than using other H-atom sensitive techniques, such as neutron diffraction. This proof of principle experiment confirms the H-atom positions in structures obtained from XRD, providing evidence for the potential use of NEXAFS as a more accurate and easier method of locating H-atoms within organic crystals.
为了充分理解氢键相互作用对有机晶体结构和性质的影响,能够确定氢原子在其中的精确位置非常重要。通过结合近边X射线吸收精细结构(NEXAFS)光谱和密度泛函理论(DFT)量子化学计算,我们证明了芯能级X射线光谱对供体-质子-受体系统中氢原子精确位置的敏感性。利用这种敏感性,我们将DFT的预测能力与实验性NEXAFS相结合,比使用其他氢原子敏感技术(如中子衍射)更轻松地确认了使用单晶X射线衍射(XRD)技术确定的氢原子位置。这个原理验证实验证实了XRD所得结构中的氢原子位置,为NEXAFS作为一种在有机晶体中定位氢原子的更准确、更简便方法的潜在应用提供了证据。