Suppr超能文献

基于多高斯分解模型的动脉压力脉搏波分离分析。

Arterial pressure pulse wave separation analysis using a multi-Gaussian decomposition model.

机构信息

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India.

出版信息

Physiol Meas. 2022 May 31;43(5). doi: 10.1088/1361-6579/ac6e56.

Abstract

Methods for separating the forward-backward components from blood pulse waves rely on simultaneously measured pressure and flow velocity from a target artery site. Modelling approaches for flow velocity simplify the wave separation analysis (WSA), providing a methodological and instrumentational advantage over the former; however, current methods are limited to the aortic site. In this work, a multi-Gaussian decomposition (MGD) modelled WSA (MGD) is developed for a non-aortic site such as the carotid artery. While the model is an adaptation of the existing wave separation theory, it does not rely on the information of measured or modelled flow velocity.The proposed model decomposes the arterial pressure waveform using weighted and shifted multi-Gaussians, which are then uniquely combined to yield the forward (()) and backward (()) pressure wave. A study using the database of healthy (virtual) subjects was used to evaluate the performance of MGDat the carotid artery and was compared against reference flow-based WSA methods.The MGD modelled pressure waveform yielded a root-mean-square error (RMSE) < 0.35 mmHg. Reliable forward-backward components with a group average RMSE <2.5 mmHg for() and() were obtained. When compared with the reference counterparts, the pulse pressures (Δand Δ), as well as reflection quantification indices, showed a statistically significant strong correlation ( > 0.96, < 0.0001) and ( > 0.83, < 0.0001) respectively, with an insignificant ( > 0.05) bias.This study reports WSA for carotid pressure waveforms without assumptions on flow conditions. The proposed method has the potential to adapt and widen the vascular health assessment techniques incorporating pulse wave dynamics.

摘要

方法从血液脉搏波的前向-后向分量依赖于同时测量的压力和速度从目标动脉部位。建模方法的流速简化波分离分析(WSA),提供了一种方法和仪器的优势,而前; 然而,目前的方法仅限于主动脉部位。在这项工作中,多高斯分解(MGD)建模 WSA(MGD)是为非主动脉部位如颈动脉发展。虽然该模型是现有的波分离理论的改编,它不依赖于测量或建模的流速信息。该模型使用加权和移位的多高斯分解动脉压力波形,然后唯一地组合以产生正向(())和反向(())压力波。一项使用健康(虚拟)受试者数据库的研究用于评估 MGD 在颈动脉中的性能,并与参考基于流量的 WSA 方法进行比较。MGD 模拟压力波形产生均方根误差(RMSE)<0.35 毫米汞柱。可靠的前向-后向分量的组平均 RMSE <2.5 毫米汞柱(())和(())获得。与参考值相比,脉搏压(Δ和Δ)以及反射量化指数显示出统计学上显著的强相关性(>0.96,<0.0001)和(>0.83,<0.0001),分别为(>0.05)偏差。本研究报告了颈动脉压力波的 WSA 而不假设流量条件。所提出的方法具有适应和扩大血管健康评估技术的潜力,包括脉搏波动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验