FBK, Via Sommarive 18, 38123, Povo, Trento, Italy.
INFN-TIFPA, V. Sommarive 14, 38123, Povo, Trento, Italy.
Sci Rep. 2022 May 10;12(1):7631. doi: 10.1038/s41598-022-11721-8.
The direct interaction between large-scale interplanetary disturbances emitted from the Sun and the Earth's magnetosphere can lead to geomagnetic storms representing the most severe space weather events. In general, the geomagnetic activity is measured by the Dst index. Consequently, its accurate prediction represents one of the main subjects in space weather studies. In this scenario, we try to predict the Dst index during quiet and disturbed geomagnetic conditions using the interplanetary magnetic field and the solar wind parameters. To accomplish this task, we analyzed the response of a newly developed neural network using interplanetary parameters as inputs. We strongly demonstrated that the training procedure strictly changes the capability of giving correct forecasting of stormy and disturbed geomagnetic periods. Indeed, the strategy proposed for creating datasets for training and validation plays a fundamental role in guaranteeing good performances of the proposed neural network architecture.
太阳发出的大规模行星际干扰与地球磁层之间的直接相互作用可能导致磁暴,这是最严重的空间天气事件之一。通常,地磁活动由Dst 指数来衡量。因此,准确预测它是空间天气研究的主要课题之一。在此背景下,我们尝试使用行星际磁场和太阳风参数来预测平静和扰动地磁条件下的Dst 指数。为了完成这项任务,我们分析了一个新开发的神经网络对行星际参数作为输入的响应。我们强烈证明,训练过程严格改变了对风暴和扰动地磁期进行正确预测的能力。事实上,为创建训练和验证数据集而提出的策略在保证所提出的神经网络架构的良好性能方面起着至关重要的作用。