School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, India.
Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
J Biomol Struct Dyn. 2023 Jul;41(11):4830-4846. doi: 10.1080/07391102.2022.2073270. Epub 2022 May 10.
Human antigen R (HuR) is a key regulatory protein with prominent roles in RNA metabolism and post-transcriptional gene regulation. Many studies have shown the involvement of HuR in plethora of human diseases, which are often manifestations of impaired HuR-RNA interactions. However, the inherent complexities of highly flexible protein-RNA interactions have limited our understanding of the structural basis of HuR-RNA recognition. In this study, we dissect the underlying molecular mechanism of interaction between N-terminal tandem RNA-recognition motifs (tRRMs) of HuR and mRNA using molecular dynamics simulation. We have also explored the effect of point mutations (T90A, R97A and R136A) of three reported critical residues in HuR-mRNA binding specificity. Our findings show that N-terminal tRRMs exhibit conformational stability upon RNA binding. We further show that R136A and R97A mutants significantly lose their binding affinity owing to the loss of critical interactions with mRNA. This may be attributed to the larger domain rearrangements in the mutant complexes, especially the β2β3 loops in both the tRRMs, leading to unfavourable conformations and loss of binding affinity. We have identified critical binding residues in tRRMs of HuR, contributing favourable binding energy in mRNA recognition. This study contributes significantly to understand the molecular mechanism of RNA recognition by tandem RRMs and provides a platform to modulate binding affinities through mutations. This may further guide in future structure-based drug-therapies targeting impaired HuR-RNA interactions.Communicated by Ramaswamy H. Sarma.
人抗原 R(HuR)是一种关键的调节蛋白,在 RNA 代谢和转录后基因调控中发挥着重要作用。许多研究表明 HuR 参与了多种人类疾病,这些疾病通常是 HuR-RNA 相互作用受损的表现。然而,高度灵活的蛋白质-RNA 相互作用的固有复杂性限制了我们对 HuR-RNA 识别的结构基础的理解。在这项研究中,我们使用分子动力学模拟剖析了 HuR 的 N 端串联 RNA 识别基序(tRRMs)与 mRNA 之间相互作用的潜在分子机制。我们还探索了 HuR-mRNA 结合特异性中三个报道的关键残基(T90A、R97A 和 R136A)点突变的影响。我们的发现表明,N 端 tRRMs 在 RNA 结合时表现出构象稳定性。我们进一步表明,R136A 和 R97A 突变体由于与 mRNA 关键相互作用的丧失而显著失去结合亲和力。这可能归因于突变体复合物中更大的结构域重排,特别是在两个 tRRMs 中的β2β3 环,导致不利的构象和结合亲和力丧失。我们已经确定了 HuR 中 tRRMs 的关键结合残基,这些残基在识别 mRNA 中贡献了有利的结合能。这项研究对理解串联 RRMs 识别 RNA 的分子机制做出了重要贡献,并为通过突变调节结合亲和力提供了一个平台。这可能进一步指导针对 HuR-RNA 相互作用受损的基于结构的药物治疗。