Kim Taeho, Jeon Hyeonyeol, Jegal Jonggeon, Kim Joo Hyun, Yang Hoichang, Park Jeyoung, Oh Dongyeop X, Hwang Sung Yeon
Research Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
Department of Polymer Engineering, Pukyong National University Busan 48547 Republic of Korea.
RSC Adv. 2018 Apr 24;8(28):15389-15398. doi: 10.1039/c8ra01868e. eCollection 2018 Apr 23.
Biodegradable poly(butylene succinate) (PBS) nanocomposites are polymerized polymerization of succinic acid (SA) with cellulose nanocrystal (CNC)-loaded 1,4-butanediol (1,4-BD) mixtures. As reinforcement fillers, whisker-like CNCs are first dispersed in alcohol and sequentially spray-dried, before adding them to 1,4-BD. During the polymerization, the remains of sodium sulfonate in the CNC surfaces retard the polycondensation reaction, which is carefully controlled for the CNC-loaded systems. For the 0.1-1.0 wt% CNC-loaded PBS nanocomposites, it is found the nano-fillers are sufficiently dispersed to induce different crystallization behavior of the matrix polymer. The CNCs may initially act as heterogeneous nucleation sites of the molten PBS chains, during melt crystallization. In this case, most of them tend to be pushed out from the growing crystallites, which develop different nanocomposite morphologies with increasing CNC content. Among the resulting nanocomposites, the 0.1 wt% CNC-loaded system shows the highest tensile strength of 65.9 MPa, similar to that of nylon 6, as a representative engineering polymer as well as 2 fold elongation at break compared with Homo PBS. The polymerized CNC-loaded PBS nanocomposites are expected to be a 100% biomass material for a virtuous cycle of biorefinery. Moreover, they demonstrate that the CNC-loaded PBS nanocomposite with a low CNC loading content can be used in various commercial applications for pollution abatement.
可生物降解的聚丁二酸丁二醇酯(PBS)纳米复合材料是通过将琥珀酸(SA)与负载纤维素纳米晶体(CNC)的1,4-丁二醇(1,4-BD)混合物进行聚合反应制备而成。作为增强填料,须状的CNC首先分散在酒精中,然后依次进行喷雾干燥,再将其添加到1,4-丁二醇中。在聚合过程中,CNC表面的磺酸钠残留物会阻碍缩聚反应,因此对于负载CNC的体系需要仔细控制该反应。对于负载0.1-1.0 wt% CNC的PBS纳米复合材料,发现纳米填料能够充分分散,从而诱导基体聚合物产生不同的结晶行为。在熔体结晶过程中,CNC最初可能充当熔融PBS链的异质成核位点。在这种情况下,它们中的大多数倾向于从生长的微晶中被挤出,随着CNC含量的增加,会形成不同的纳米复合材料形态。在所得的纳米复合材料中,负载0.1 wt% CNC的体系显示出最高的拉伸强度,为65.9 MPa,与作为典型工程聚合物的尼龙6相似,并且与纯PBS相比,其断裂伸长率提高了2倍。聚合得到的负载CNC的PBS纳米复合材料有望成为生物炼制良性循环中的100%生物质材料。此外,它们表明低CNC负载量的负载CNC的PBS纳米复合材料可用于各种减少污染的商业应用中。