Suppr超能文献

化合物F779-0434通过破坏RAD52与单链DNA的结合,在BRCA2缺陷的癌细胞中引发合成致死效应。

Compound F779-0434 causes synthetic lethality in BRCA2-deficient cancer cells by disrupting RAD52-ssDNA association.

作者信息

Li Jian, Yang Qianye, Zhang Yang, Huang Kejia, Sun Rong, Zhao Qi

机构信息

School of Medicine, Chengdu University Chengdu 610106 China

Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610052 China

出版信息

RSC Adv. 2018 May 23;8(34):18859-18869. doi: 10.1039/c8ra01919c. eCollection 2018 May 22.

Abstract

Maintenance of genomic integrity is essential for the survival of all organisms. Homologous recombination (HR) is the major pathway for high-fidelity repair of DNA double-stranded breaks (DSBs). In addition to the classic BRCA-RAD51 pathway, another secondary HR sub-pathway dependent on RAD52 has been suggested to be functioning in mammalian cells. Importantly, RAD52 has been shown to be synthetically lethal to BRCA1/2-deficient cells, rendering RAD52 to be a desirable target in cancer therapy. In the current study, we performed a structure-based virtual screening of 47 737 drug-like compounds to identify RAD52-specific inhibitors. The top ranked virtual screening hits were further characterized using molecular dynamics simulation and biochemical and cell-based assays. We found that one compound, namely, F779-0434 specifically suppressed the growth of BRCA2-deficient cells and disrupted RAD52-ssDNA interaction . This RAD52-specific inhibitor identified in the current study is a promising compound for targeted cancer therapy, and it can also be used as a probe to study the mechanisms of DNA repair in human cells.

摘要

维持基因组完整性对所有生物体的生存至关重要。同源重组(HR)是DNA双链断裂(DSB)高保真修复的主要途径。除了经典的BRCA-RAD51途径外,另一种依赖RAD52的次要HR子途径也被认为在哺乳动物细胞中发挥作用。重要的是,RAD52已被证明对BRCA1/2缺陷细胞具有合成致死性,这使得RAD52成为癌症治疗中一个理想的靶点。在本研究中,我们对47737种类药物化合物进行了基于结构的虚拟筛选,以鉴定RAD52特异性抑制剂。利用分子动力学模拟以及生化和细胞实验对排名靠前的虚拟筛选命中物进行了进一步表征。我们发现一种名为F779-0434的化合物特异性抑制了BRCA2缺陷细胞的生长,并破坏了RAD52与单链DNA的相互作用。在本研究中鉴定出的这种RAD52特异性抑制剂是一种有前景的靶向癌症治疗化合物,它还可作为探针用于研究人类细胞中的DNA修复机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ad7/9080615/a4665f0074ee/c8ra01919c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验