Glova Artyom D, Volgin Igor V, Nazarychev Victor M, Larin Sergey V, Lyulin Sergey V, Gurtovenko Andrey A
Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi Prospect V.O. 31 St. Petersburg 199004 Russia
Faculty of Physics, St. Petersburg State University Ulyanovskaya Street 3, Petrodvorets St. Petersburg 198504 Russia.
RSC Adv. 2019 Nov 27;9(66):38834-38847. doi: 10.1039/c9ra07325f. eCollection 2019 Nov 25.
Paraffin-based composites represent a promising class of materials with numerous practical applications such as heat storage. Computer modeling of these complex multicomponent systems requires a proper theoretical description of both the -alkane matrix and the non-alkane filler molecules. The latter can be modeled with the use of a state-of-the-art general-purpose force field such as GAFF, CHARMM, OPLS-AA and GROMOS, while the paraffin matrix is traditionally described in the frame of relatively old, alkane-specific force fields (TraPPE, NERD, and PYS). In this paper we link these two types of models and evaluate the performance of several general-purpose force fields in computer modeling of paraffin by their systematic comparison with earlier alkane-specific models as well as with experimental data. To this end, we have performed molecular dynamics simulations of -eicosane bulk samples with the use of 10 different force fields: TraPPE, NERD, PYS, OPLS-UA, GROMOS, GAFF, GAFF2, OPLS-AA, L-OPLS-AA, and CHARMM36. For each force field we calculated several thermal, structural and dynamic characteristics of -eicosane over a wide temperature range. Overall, our findings show that the general-purpose force fields such as CHARMM36, L-OPLS-AA and GAFF/GAFF2 are able to provide a realistic description of -eicosane samples. While alkane-specific models outperform most general-purpose force fields as far as the temperature dependence of mass density, the coefficient of volumetric thermal expansion in the liquid state, and the crystallization temperature are concerned, L-OPLS-AA, CHARMM36 and GAFF2 force fields provide a better match with experiment for the shear viscosity and the diffusion coefficient in melt. Furthermore, we show that most general-purpose force fields are able to reproduce qualitatively the experimental triclinic crystal structure of -eicosane at low temperatures.
石蜡基复合材料是一类很有前景的材料,具有储热等众多实际应用。对这些复杂多组分体系进行计算机建模,需要对正构烷烃基体和非正构烷烃填料分子都有恰当的理论描述。后者可以使用诸如GAFF、CHARMM、OPLS - AA和GROMOS等最先进的通用力场进行建模,而石蜡基体传统上是在相对古老的、针对烷烃的力场(TraPPE、NERD和PYS)框架内进行描述的。在本文中,我们将这两种类型的模型联系起来,并通过与早期针对烷烃的模型以及实验数据进行系统比较,评估几种通用力场在石蜡计算机建模中的性能。为此,我们使用10种不同的力场对正二十烷本体样品进行了分子动力学模拟:TraPPE、NERD、PYS、OPLS - UA、GROMOS、GAFF、GAFF2、OPLS - AA、L - OPLS - AA和CHARMM36。对于每个力场,我们在很宽的温度范围内计算了正二十烷的几个热学、结构和动力学特性。总体而言,我们的研究结果表明,诸如CHARMM36、L - OPLS - AA和GAFF/GAFF2等通用力场能够对正二十烷样品提供逼真的描述。就质量密度的温度依赖性、液态时的体积热膨胀系数以及结晶温度而言,针对烷烃的模型比大多数通用力场表现更好,而L - OPLS - AA、CHARMM36和GAFF2力场在熔体的剪切粘度和扩散系数方面与实验结果匹配得更好。此外,我们表明大多数通用力场能够定性地再现低温下正二十烷的实验三斜晶体结构。