Jang Eun-Pyo, Jo Jung-Ho, Kim Min-Seok, Yoon Suk-Young, Lim Seung-Won, Kim Jiwan, Yang Heesun
Department of Materials Science and Engineering, Hongik University Seoul 04066 Republic of Korea
Department of Advanced Materials Engineering, Kyonggi University Suwon 16227 Republic of Korea
RSC Adv. 2018 Mar 12;8(18):10057-10063. doi: 10.1039/c8ra00119g. eCollection 2018 Mar 5.
Silica is the most commonly used oxide encapsulant for passivating fluorescent quantum dots (QDs) against degradable conditions. Such a silica encapsulation has been conventionally implemented a Stöber or reverse microemulsion process, mostly targeting CdSe-based QDs to date. However, both routes encounter a critical issue of considerable loss in photoluminescence (PL) quantum yield (QY) compared to pristine QDs after silica growth. In this work, we explore the embedment of multishelled InP/ZnSeS/ZnS QDs, whose stability is quite inferior to CdSe counterparts, in a silica matrix by means of a tetramethyl orthosilicate-based, waterless, catalyst-free synthesis. It is revealed that the original QY (80%) of QDs is nearly completely retained in the course of the present silica embedding reaction. The resulting QD-silica composites are then placed in degradable conditions such UV irradiation, high temperature/high humidity, and operation of an on-chip-packaged light-emitting diode (LED) to attest to the efficacy of silica passivation on QD stability. Particularly, the promising results with regard to device efficiency and stability of the on-chip-packaged QD-LED firmly suggest the effectiveness of the present silica embedding strategy in not only maximally retaining QY of QDs but effectively passivating QDs, paving the way for the realization of a highly efficient, robust QD-LED platform.
二氧化硅是最常用于对荧光量子点(QDs)进行钝化以抵抗可降解条件的氧化物封装材料。这种二氧化硅封装传统上是通过斯托伯法或反向微乳液法实现的,迄今为止主要针对基于CdSe的量子点。然而,与原始量子点相比,这两种方法在二氧化硅生长后都存在光致发光(PL)量子产率(QY)大幅损失的关键问题。在这项工作中,我们通过基于原硅酸四甲酯的无水、无催化剂合成方法,探索将稳定性远低于CdSe量子点的多壳层InP/ZnSeS/ZnS量子点嵌入二氧化硅基质中。结果表明,在当前的二氧化硅嵌入反应过程中,量子点的原始量子产率(80%)几乎完全得以保留。然后将所得的量子点-二氧化硅复合材料置于可降解条件下,如紫外线照射、高温/高湿度以及片上封装发光二极管(LED)的运行,以证明二氧化硅对量子点稳定性的钝化效果。特别是,关于片上封装量子点发光二极管的器件效率和稳定性的良好结果有力地表明了当前二氧化硅嵌入策略不仅能最大程度地保留量子点的量子产率,还能有效地钝化量子点,为实现高效、稳健的量子点发光二极管平台铺平了道路。