Suppr超能文献

源自玉米芯的三维蜂窝状多孔碳用于通过电容去离子法去除水中重金属

Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization.

作者信息

Zhang X F, Wang B, Yu J, Wu X N, Zang Y H, Gao H C, Su P C, Hao S Q

机构信息

Department of Chemical Engineering, Chengde Petroleum College Xueyuan Road Chengde China

College of Material Science and Chemical Engineering, Harbin Engineering University Harbin China

出版信息

RSC Adv. 2018 Jan 4;8(3):1159-1167. doi: 10.1039/c7ra10689k. eCollection 2018 Jan 2.

Abstract

In this study, porous carbon (3DHPC) with a 3D honeycomb-like structure was synthesized from waste biomass corncob hydrothermal carbonization coupled with KOH activation and investigated as a capacitive deionization (CDI) electrode material. The obtained 3DHPC possesses a hierarchal macroporous and mesoporous structure, and a large accessible specific surface area (952 m g). Electrochemical tests showed that the 3DHPC electrode exhibited a specific capacitance of 452 F g and good electric conductivity. Moreover, the feasibility of electrosorptive removal of chromium(vi) from an aqueous solution using the 3DHPC electrode was demonstrated. When 1.0 V was applied to a solution containing 30 mg L chromium(vi), the 3DHPC electrode exhibited a higher removal efficiency of 91.58% compared with that in the open circuit condition. This enhanced adsorption results from the improved affinity between chromium(vi) and the electrode under electrochemical assistance involving a non-faradic process. Consequently, the 3DHPC electrode with typical double-layer capacitor behavior is demonstrated to be a favorable electrode material for capacitive deionization.

摘要

在本研究中,通过废弃生物质玉米芯水热碳化结合KOH活化合成了具有三维蜂窝状结构的多孔碳(3DHPC),并将其作为电容去离子(CDI)电极材料进行了研究。所制备的3DHPC具有分级大孔和中孔结构以及较大的可及比表面积(952 m²/g)。电化学测试表明,3DHPC电极表现出452 F/g的比电容和良好的导电性。此外,还证明了使用3DHPC电极从水溶液中电吸附去除六价铬的可行性。当对含有30 mg/L六价铬的溶液施加1.0 V电压时,与开路条件相比,3DHPC电极表现出更高的去除效率,达到91.58%。这种增强的吸附源于在涉及非法拉第过程的电化学辅助下,六价铬与电极之间亲和力的提高。因此,具有典型双层电容器行为的3DHPC电极被证明是一种用于电容去离子的优良电极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4fb/9076976/8eca7c8ce729/c7ra10689k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验