Hu Ning, Tang Zheng, Shen Pei Kang
Collaborative Innovation Center of Sustainable Energy Materials, Guangxi University China
Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University China.
RSC Adv. 2018 Jul 25;8(47):26589-26595. doi: 10.1039/c8ra03599g. eCollection 2018 Jul 24.
In this study, an ultrathin 2-dimensional hierarchical nickel oxide nanobelt film array was successfully assembled and grown on a Ni substrate as a binder-free electrode material for lithium ion batteries. In the typical synthesis process, the evolution of the nickel oxide array structure was controlled by adjusting the amount of surfactant, duration of reaction time and hydrothermal temperature. By virtue of the beneficial structural characteristics of the nanobelt film array, the as-obtained NiO array electrode exhibits excellent lithium storage capacity (1035 mA h g at 0.2C after 70 cycles and 839 mA h g at 0.5C after 70 cycles) for LIBs. This excellent electrochemical performance is attributed to the nanobelt film (3-5 nm thickness) array structures, which have immense open spaces that offer more Li storage active sites and adequate buffering space to reduce internal mechanical stress and shorten the Li diffusion distance. Additionally, this array structure is designed to achieve a binder-free and non-conductive additive electrode without complex coating and compressing during the electrode preparation process.
在本研究中,成功地在镍基底上组装并生长了一种超薄二维分级氧化镍纳米带薄膜阵列,作为锂离子电池的无粘结剂电极材料。在典型的合成过程中,通过调节表面活性剂的用量、反应时间和水热温度来控制氧化镍阵列结构的演变。凭借纳米带薄膜阵列有益的结构特性,所制备的氧化镍阵列电极对锂离子电池表现出优异的锂存储容量(70次循环后在0.2C时为1035 mA h/g,70次循环后在0.5C时为839 mA h/g)。这种优异的电化学性能归因于纳米带薄膜(3 - 5nm厚)阵列结构,其具有巨大的开放空间,提供了更多的锂存储活性位点和足够的缓冲空间,以减少内部机械应力并缩短锂扩散距离。此外,这种阵列结构设计用于实现无粘结剂和无导电添加剂的电极,在电极制备过程中无需复杂的涂覆和压缩。