Suppr超能文献

生物炭负载硫化物改性的纳米零价铁用于还原硝基苯。

Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene.

作者信息

Zhang Dejin, Li Yang, Tong Siqi, Jiang Xinbai, Wang Lianjun, Sun Xiuyun, Li Jiansheng, Liu Xiaodong, Shen Jinyou

机构信息

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China

出版信息

RSC Adv. 2018 Jun 15;8(39):22161-22168. doi: 10.1039/c8ra04314k. eCollection 2018 Jun 13.

Abstract

Sulfide-modified nanoscale zerovalent iron (S-nZVI) was effectively utilized for the reduction of various contaminants, despite its applicability being limited due to agglomeration, oxidation and electron loss. In this study, biochar (BC)-supported S-nZVI was prepared to enhance the reactivity of S-nZVI for nitrobenzene (NB) reduction. Scanning electron microscopy images showed that the S-nZVI particles were well-dispersed on the BC surface as well as in the channels. NB removal and aniline formation could be significantly enhanced by using S-nZVI@BC, as compared to S-nZVI and blank BC. NB removal by S-nZVI@BC followed the pseudo second-order kinetics model and Langmuir isotherm model, suggesting hybrid chemical reaction-sorption was involved. Furthermore, a possible reaction mechanism for enhanced NB removal by S-nZVI@BC was proposed, including chemical adsorption of NB onto S-nZVI@BC, direct reduction by S-nZVI and enhanced electron transfer. The high reducibility of S-nZVI@BC as well as its excellent antioxidation ability and reusability demonstrated its promising prospects in remediation applications.

摘要

硫化物改性纳米零价铁(S-nZVI)虽因团聚、氧化和电子损失导致其适用性受限,但仍被有效用于还原各种污染物。在本研究中,制备了生物炭(BC)负载的S-nZVI以增强S-nZVI还原硝基苯(NB)的反应活性。扫描电子显微镜图像显示,S-nZVI颗粒在BC表面以及通道中分散良好。与S-nZVI和空白BC相比,使用S-nZVI@BC可显著提高NB去除率和苯胺生成量。S-nZVI@BC对NB的去除遵循准二级动力学模型和朗缪尔等温线模型,表明涉及混合化学反应吸附。此外,还提出了S-nZVI@BC增强NB去除的可能反应机制,包括NB在S-nZVI@BC上的化学吸附、S-nZVI的直接还原以及增强的电子转移。S-nZVI@BC的高还原性及其优异的抗氧化能力和可重复使用性表明其在修复应用中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f079/9081282/ac3bdaee85ae/c8ra04314k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验