Lohmann-Richters F P, Odenwald C, Kickelbick G, Abel B, Varga Á
Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 D-04318 Leipzig Germany
Saarland University, Inorganic Solid State Chemistry, Campus, Building C4 1 66123 Saarbrücken Germany.
RSC Adv. 2018 Jun 13;8(39):21806-21815. doi: 10.1039/c8ra03293a.
Nanostructuring fuel cell electrodes is a viable pathway to reach high performance with low catalyst loadings. Thus, in solid acid fuel cells, small CsHPO electrolyte particles are needed for the composite powder electrodes as well as for thin electrolyte membranes. Previous efforts have resulted in significant improvements in performance when using sub-micrometer CsHPO particles, but laborious methods with low throughput were employed for their synthesis. In this work, we present a simple, robust, and scalable method to synthesize CsHPO particles with diameters down to below 200 nm. The method involves precipitating CsHPO by mixing precursor solutions in alcohol in the presence of a dispersing additive. The influence of the concentrations, the batch size, the solvent, and the mixing process is investigated. The particle size decreases down to 119 nm with increasing amount of dispersing additive. Mixing in a microreactor leads to a narrower particle size distribution. The particle shape can be tuned by varying the solvent. The ionic conductivity under solid acid fuel cell conditions is 2.0 × 10 S cm and thus close to that of CsHPO without dispersing additive.
对燃料电池电极进行纳米结构化处理是在低催化剂负载量下实现高性能的可行途径。因此,在固体酸燃料电池中,复合粉末电极以及薄电解质膜都需要小尺寸的CsHPO电解质颗粒。此前的研究在使用亚微米级CsHPO颗粒时性能有了显著提升,但合成这些颗粒采用的是低通量的繁琐方法。在这项工作中,我们提出了一种简单、可靠且可扩展的方法来合成直径低至200 nm以下的CsHPO颗粒。该方法包括在分散添加剂存在的情况下,于醇类中混合前驱体溶液来沉淀CsHPO。研究了浓度、批量大小、溶剂和混合过程的影响。随着分散添加剂用量的增加,颗粒尺寸减小至119 nm。在微反应器中混合会使颗粒尺寸分布更窄。颗粒形状可通过改变溶剂来调节。在固体酸燃料电池条件下的离子电导率为2.0×10 S cm,因此接近未添加分散添加剂的CsHPO的离子电导率。