Moll Bastian, Tichelkamp Thomas, Wegner Susann, Francis Biju, Müller Thomas J J, Janiak Christoph
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
RSC Adv. 2019 Nov 15;9(64):37365-37375. doi: 10.1039/c9ra08675g. eCollection 2019 Nov 13.
Phenothiazines are of potential use as dye sensitizers in Grätzel-type dye sensitized solar cells (DSSC). Plasmonic nanoparticles like gold nanoparticles can enhance the power conversion efficiency of these solar cells. In this work near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) is used to investigate the interaction between six novel phenothiazine-merocyanine dyes containing the three different functional groups rhodanine, 1,3-indanedione and cyanoacylic acid with plasmonic nanomaterials, to decide if the incorporation of plasmonic nanoparticles could enhance the efficiency of a Grätzel-type solar cell. The studies were carried out in the solution state using spherical and rod-shaped gold nanostructures. With KCl induced agglomerated spherical gold nanoparticles, forming SERS hot spots, the results showed low detection limits between 0.1 μmol L for rhodanine containing phenothiazine dyes, because of the formation of Au-S bonds and 3 μmol L for cyanoacrylic acid containing dyes, which formed H-aggregates in the watery dispersion. Results with gold nanorods showed similar trends in the SERS measurements with lower limits of detection, because of a shielding effect from the strongly-bound surfactant. Additional fluorescence studies were carried out to determine if the incorporation of nanostructures leads to fluorescence quenching. Overall we conclude that the addition of gold nanoparticles to rhodanine and 1,3-indanedione containing phenothiazine merocyanine dyes could enhance their performance in Grätzel-type solar cells, because of their strong interactions with plasmonic nanoparticles.
吩噻嗪在格拉茨尔型染料敏化太阳能电池(DSSC)中具有作为染料敏化剂的潜在用途。诸如金纳米颗粒之类的等离子体纳米颗粒可以提高这些太阳能电池的功率转换效率。在这项工作中,近红外表面增强拉曼光谱(NIR-SERS)用于研究六种含有罗丹宁、1,3-茚二酮和氰基丙烯酸这三种不同官能团的新型吩噻嗪-部花青染料与等离子体纳米材料之间的相互作用,以确定掺入等离子体纳米颗粒是否可以提高格拉茨尔型太阳能电池的效率。研究是在溶液状态下使用球形和棒状金纳米结构进行的。对于氯化钾诱导团聚形成SERS热点的球形金纳米颗粒,结果表明,含罗丹宁的吩噻嗪染料的检测限低至0.1 μmol/L,这是由于形成了Au-S键;而含氰基丙烯酸的染料的检测限为3 μmol/L,其在水性分散体中形成了H聚集体。金纳米棒的结果在SERS测量中显示出类似趋势,检测限更低,这是由于强结合表面活性剂的屏蔽效应。还进行了额外的荧光研究,以确定纳米结构的掺入是否导致荧光猝灭。总体而言,我们得出结论,由于含罗丹宁和1,3-茚二酮的吩噻嗪部花青染料与等离子体纳米颗粒之间的强相互作用,向其中添加金纳米颗粒可以提高它们在格拉茨尔型太阳能电池中的性能。