Suppr超能文献

生长在石墨烯上的二硒化镍对三碘化物氧化还原对还原反应的电催化性能增强。

Enhanced electrocatalytic performance of nickel diselenide grown on graphene toward the reduction of triiodide redox couples.

作者信息

Zhang Xiao, Zhang Haijun, Wang Xingyu, Zhou Xiaomeng

机构信息

Center for Aircraft Fire and Emergency, Civil Aviation University of China Tianjin 300300 P. R. China

出版信息

RSC Adv. 2018 Aug 6;8(49):28131-28138. doi: 10.1039/c8ra05167d. eCollection 2018 Aug 2.

Abstract

The promising activity of nickel diselenide (NiSe) towards electrocatalysis has made it especially attractive in energy conversion fields. However, NiSe with high electrocatalytic performance always requires complicated fabrication or expensive conductive polymers, resulting in the scale-up still being challenging. Herein, we introduce a simple and cost-effective synthesis of NiSe dispersed on the surface of graphene (NiSe/RGO NPs). NiSe/RGO NPs exhibited enhanced electrocatalytic performance and long-term stability for the reduction reaction of triiodide redox couples in dye-sensitized solar cells (DSSCs). Leveraging the advantageous features, the DSSC fabricated with NiSe/RGO NPs as CE had a smaller charge-transfer resistance ( ) value and higher short-circuit current density and fill factor than naked NiSe NPs. Additionally, NiSe/RGO NPs achieved a PCE of 7.76%, higher than that of pure NiSe (6.51%) and even exceeding that of Pt (7.56%). These prominent features demonstrated that the NiSe/RGO NPs in this work are a promising cheap and efficient electrocatalyst to replace state-of-the-art Pt.

摘要

二硒化镍(NiSe)在电催化方面展现出的良好活性使其在能量转换领域格外引人注目。然而,具有高电催化性能的NiSe总是需要复杂的制备过程或昂贵的导电聚合物,这使得其规模化生产仍然具有挑战性。在此,我们介绍一种简单且经济高效的方法来合成分散在石墨烯表面的NiSe(NiSe/RGO NPs)。NiSe/RGO NPs在染料敏化太阳能电池(DSSC)中对三碘化物氧化还原对的还原反应表现出增强的电催化性能和长期稳定性。利用这些优势特性,以NiSe/RGO NPs作为对电极(CE)制备的DSSC具有比裸NiSe NPs更小的电荷转移电阻( )值、更高的短路电流密度和填充因子。此外,NiSe/RGO NPs实现了7.76%的光电转换效率(PCE),高于纯NiSe(6.51%),甚至超过了Pt(7.56%)。这些突出特性表明,本文中的NiSe/RGO NPs是一种有前景的廉价且高效的电催化剂,有望取代现有的Pt。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef99/9084294/6f3678b61b56/c8ra05167d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验