Issahaku Abdul Rashid, Salifu Elliasu Y, Soliman Mahmoud E S
Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
J Biomol Struct Dyn. 2023 Jul;41(11):4890-4902. doi: 10.1080/07391102.2022.2074141. Epub 2022 May 11.
The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRAS) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRAS. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (Δ), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.
几十年来,由于 Kirsten 大鼠肉瘤癌蛋白(KRAS)频繁发生突变(主要发生在密码子 12 处)以及该蛋白看似难以攻克的靶向性,针对它的药物研发屡屡失败。然而,随着共价靶向技术的进步,这种癌蛋白正从“不可成药”蛋白列表中被剔除。这一成果见证了一些处于不同临床试验阶段的共价药物。AMG510 和 MRTX849 作为半胱氨酸突变型 KRAS(KRAS)抑制剂推进到 III 期临床试验,这为本次研究中对 AMG510 和 MRTX849 的偏向性选择提供了依据。尽管有这一进展,但这些药物的分子和原子作用方式仍未明晰。在本研究中,我们运用计算工具来揭示 AMG510 和 MRTX849 与突变型 KRAS 的原子相互作用及随后的构象效应。结果显示,AMG510 和 MRTX849 复合物的总自由结合能(Δ)相似,分别为 -88.15 ± 5.96 kcal/mol 和 -88.71 ± 7.70 kcal/mol。Gly10、Lys16、Thr58、Gly60、Glu62、Glu63、Arg68、Asp69、Met72、His95、Tyr96、Gln99、Arg102 和 Val103 与 AMG510 和 MRTX849 有显著相互作用。在模拟的各个阶段,这些残基通过氢键与 AMG510 和 MRTX849 的药效基团相互作用,键长逐渐减小。这些相互作用连同 π-π 堆积、π-σ 和 π-烷基相互作用导致开关 I 展开,同时使开关 II 紧凑,这可能会中断效应蛋白与这些界面的结合。这些见解为 AMG510 和 MRTX849 的成功提供了有用的原子层面观点,可指导设计更具选择性和强效的 KRAS 抑制剂。由 Ramaswamy H. Sarma 传达。