Suppr超能文献

人工智能在预测前路颈椎间盘切除融合术后早发相邻节段退变中的应用。

Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion.

机构信息

Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL, USA.

International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.

出版信息

Eur Spine J. 2022 Aug;31(8):2104-2114. doi: 10.1007/s00586-022-07238-3. Epub 2022 May 11.

Abstract

PURPOSE

Anterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF.

METHODS

Retrospective review of prospectively collected data of patients undergoing ACDF at a quaternary referral medical center was performed. Patients > 18 years of age with > 6 months of follow-up and complete pre- and postoperative X-ray and MRI imaging were included. An ML-based algorithm was developed to predict EO-ASD based on preoperative demographic, clinical, and radiographic parameters, and model performance was evaluated according to discrimination and overall performance.

RESULTS

In total, 366 ACDF patients were included (50.8% male, mean age 51.4 ± 11.1 years). Over 18.7 ± 20.9 months of follow-up, 97 (26.5%) patients developed EO-ASD. The model demonstrated good discrimination and overall performance according to precision (EO-ASD: 0.70, non-ASD: 0.88), recall (EO-ASD: 0.73, non-ASD: 0.87), accuracy (0.82), F1-score (0.79), Brier score (0.203), and AUC (0.794), with C4/C5 posterior disc bulge, C4/C5 anterior disc bulge, C6 posterior superior osteophyte, presence of osteophytes, and C6/C7 anterior disc bulge identified as the most important predictive features.

CONCLUSIONS

Through an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.

摘要

目的

颈椎前路椎间盘切除融合术(ACDF)是治疗颈椎退行性疾病的常见手术方法。然而,由此产生的生物力学改变可能导致早发性相邻节段退变(EO-ASD),这可能会出现症状并需要再次手术。本研究旨在开发和验证一种机器学习(ML)模型,以预测 ACDF 后的 EO-ASD。

方法

对一家四级转诊医疗中心接受 ACDF 的患者前瞻性收集的数据进行回顾性分析。纳入年龄>18 岁、随访时间>6 个月且术前和术后 X 线和 MRI 影像学完整的患者。基于术前人口统计学、临床和影像学参数,开发了一种基于 ML 的算法来预测 EO-ASD,根据区分度和整体性能评估模型性能。

结果

共纳入 366 例 ACDF 患者(50.8%为男性,平均年龄 51.4±11.1 岁)。在 18.7±20.9 个月的随访中,97 例(26.5%)患者发生 EO-ASD。该模型在区分度和整体性能方面表现良好,根据精确度(EO-ASD:0.70,非 ASD:0.88)、召回率(EO-ASD:0.73,非 ASD:0.87)、准确率(0.82)、F1 评分(0.79)、Brier 评分(0.203)和 AUC(0.794),C4/C5 后椎间盘膨出、C4/C5 前椎间盘膨出、C6 后上缘骨赘、骨赘存在和 C6/C7 前椎间盘膨出被确定为最重要的预测特征。

结论

通过机器学习方法,该模型确定了 ACDF 后 EO-ASD 发生的危险因素,并具有良好的区分度和整体性能。通过解决传统统计学的局限性,机器学习技术可以支持发现、临床决策和基于精度的脊柱护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验