Suppr超能文献

训练更深层图神经网络的技巧汇总:一项全面的基准研究

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study.

作者信息

Chen Tianlong, Zhou Kaixiong, Duan Keyu, Zheng Wenqing, Wang Peihao, Hu Xia, Wang Zhangyang

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2769-2781. doi: 10.1109/TPAMI.2022.3174515. Epub 2023 Feb 3.

Abstract

Training deep graph neural networks (GNNs) is notoriously hard. Besides the standard plights in training deep architectures such as vanishing gradients and overfitting, it also uniquely suffers from over-smoothing, information squashing, and so on, which limits their potential power for encoding the high-order neighbor structure in large-scale graphs. Although numerous efforts are proposed to address these limitations, such as various forms of skip connections, graph normalization, and random dropping, it is difficult to disentangle the advantages brought by a deep GNN architecture from those "tricks" necessary to train such an architecture. Moreover, the lack of a standardized benchmark with fair and consistent experimental settings poses an almost insurmountable obstacle to gauge the effectiveness of new mechanisms. In view of those, we present the first fair and reproducible benchmark dedicated to assessing the "tricks" of training deep GNNs. We categorize existing approaches, investigate their hyperparameter sensitivity, and unify the basic configuration. Comprehensive evaluations are then conducted on tens of representative graph datasets including the recent large-scale Open Graph Benchmark, with diverse deep GNN backbones. We demonstrate that an organic combo of initial connection, identity mapping, group and batch normalization attains the new state-of-the-art results for deep GNNs on large datasets. Codes are available: https://github.com/VITA-Group/Deep_GCN_Benchmarking.

摘要

训练深度图神经网络(GNN)非常困难。除了训练深度架构时常见的困境,如梯度消失和过拟合外,它还特别容易出现过度平滑、信息挤压等问题,这限制了它们在大规模图中编码高阶邻居结构的潜在能力。尽管人们提出了许多努力来解决这些限制,如各种形式的跳跃连接、图归一化和随机丢弃,但很难将深度GNN架构带来的优势与训练这种架构所需的那些“技巧”区分开来。此外,缺乏具有公平一致实验设置的标准化基准,这对评估新机制的有效性构成了几乎无法克服的障碍。鉴于此,我们提出了第一个公平且可重现的基准,专门用于评估训练深度GNN的“技巧”。我们对现有方法进行分类,研究它们的超参数敏感性,并统一基本配置。然后,我们在包括最近的大规模开放图基准在内的数十个代表性图数据集上,使用不同的深度GNN主干进行了全面评估。我们证明,初始连接、恒等映射、组归一化和批归一化的有机组合在大型数据集上为深度GNN取得了新的最优结果。代码可获取:https://github.com/VITA-Group/Deep_GCN_Benchmarking

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验