Suppr超能文献

通过导向离子束串联质谱法研究钍原子和铀阳离子与SF的反应。

Reactions of Atomic Thorium and Uranium Cations with SF Studied by Guided Ion Beam Tandem Mass Spectrometry.

作者信息

Bubas Amanda R, Iacovino Anna C, Armentrout P B

机构信息

Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, Utah 84112-0850, United States.

出版信息

J Phys Chem A. 2022 May 26;126(20):3239-3246. doi: 10.1021/acs.jpca.2c02090. Epub 2022 May 11.

Abstract

The fundamental chemistry of the thorium and uranium fluorides continues to be an area of interest because of the use of thorium and uranium fluoride compounds in nuclear fuel systems. Here, we study the reaction of thorium cations with sulfur hexafluoride for the first time and revisit the reaction of uranium cations with sulfur hexafluoride. By using guided ion beam tandem mass spectrometry, we explore the reaction pathways that become accessible well above thermal energies ( ∼ 0.04 eV). Overall, we find that both Th and U react very efficiently with SF, approaching the collision limit at both thermal and elevated energies. The primary products observed at low energies include Th, UF, and SF, all of which are formed in barrierless, exothermic processes. SF was also observed, although the pressure dependence of this channel reveals that SF forms exothermically through secondary reactions, which the energy dependences suggest result from reactions between ThF and UF with SF. At higher energies, both AnF products are observed to decay to AnF + F, and both SF and SF exhibit cross sections with endothermic features. For both systems, the rise in SF can be attributed to a secondary collision between AnF with SF on the basis of the pressure dependence of the SF channel at higher energies, and the rise in SF appears to result from the decomposition of SF to SF + F.

摘要

由于钍和铀的氟化物化合物在核燃料系统中的应用,钍和铀的氟化物的基础化学仍然是一个备受关注的领域。在这里,我们首次研究了钍阳离子与六氟化硫的反应,并重新审视了铀阳离子与六氟化硫的反应。通过使用导向离子束串联质谱,我们探索了在远高于热能(约0.04电子伏特)时可及的反应途径。总体而言,我们发现钍和铀与六氟化硫的反应都非常高效,在热能和高能情况下都接近碰撞极限。在低能量下观察到的主要产物包括钍、铀氟化物和六氟化硫,所有这些产物都是在无势垒的放热过程中形成的。也观察到了六氟化硫,尽管该通道的压力依赖性表明六氟化硫是通过二级反应放热形成的,能量依赖性表明这是由钍氟化物和铀氟化物与六氟化硫之间的反应导致的。在较高能量下,观察到两种锕系元素氟化物产物都分解为锕系元素氟化物加氟,并且六氟化硫和六氟化硫都表现出具有吸热特征的截面。对于这两个系统,基于较高能量下六氟化硫通道的压力依赖性,六氟化硫的增加可归因于锕系元素氟化物与六氟化硫之间的二次碰撞,而六氟化硫的增加似乎是由六氟化硫分解为六氟化硫加氟导致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验