Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nature. 2022 Jun;606(7912):172-179. doi: 10.1038/s41586-022-04696-z. Epub 2022 May 11.
Missense driver mutations in cancer are concentrated in a few hotspots. Various mechanisms have been proposed to explain this skew, including biased mutational processes, phenotypic differences and immunoediting of neoantigens; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
癌症中的错义驱动突变集中在少数热点区域。已经提出了各种机制来解释这种偏差,包括偏向的突变过程、表型差异和新抗原的免疫编辑;然而,据我们所知,没有现有的模型可以权衡这些特征对肿瘤进化的相对贡献。我们提出了一个统一的理论“自由适应性”框架,该框架将多模态基因组、表观基因组、转录组和蛋白质组数据巧妙地整合到一个生物物理模型中,该模型描述了驱动基因突变赋予癌细胞适应性优势的限速过程。我们专注于 TP53,这是癌症中突变最多的基因,提出了对突变型 p53 浓度的推断,并证明 TP53 热点突变最优地解决了致癌潜能和新抗原免疫原性之间的进化权衡。我们的模型可以预测癌症基因组图谱中的患者生存情况和接受免疫治疗的肺癌患者的生存情况,以及 TP53 变体种系携带者的肿瘤发病年龄。在癌症患者和一个独特的大型健康个体数据集的实验中验证了预测的热点突变之间的差异免疫原性。我们的数据表明,TP53 突变的免疫选择压力在非癌性病变中的作用小于在肿瘤中的作用,这表明针对免疫的靶向治疗可能为前者提供了早期预防性机会。因此,确定免疫原性和致癌功能对热点突变选择优势的相对贡献,对精准免疫治疗和我们对肿瘤进化的理解都具有重要意义。