Suppr超能文献

太帕斯卡静态压力下的材料合成。

Materials synthesis at terapascal static pressures.

机构信息

Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.

Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography University of Bayreuth, Bayreuth, Germany.

出版信息

Nature. 2022 May;605(7909):274-278. doi: 10.1038/s41586-022-04550-2. Epub 2022 May 11.

Abstract

Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell, producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride ReN-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.

摘要

理论模型预测了在极端压力和温度条件下材料非常特殊的结构和性质。迄今为止,由于超高压实验的技术复杂性以及缺乏相关的原位材料分析方法,它们在 200 吉帕斯卡以上的合成和研究受到了阻碍。在这里,我们报告了一种开发的方法,可用于在激光加热下进行静态压缩实验。我们应用这种方法在激光加热的双级金刚石压腔中实现约 600 和 900 吉帕斯卡的压力,生成铼-氮合金,并实现了六方氮化铼 ReN 的合成-正如我们的理论分析所示,只有在极端压缩下才稳定。使用同步加速器单晶 X 射线衍射对微晶体进行原位全化学和结构表征,证明了该方法能够将高压晶体学扩展到太帕斯卡范围的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5815/9095484/2914ea2ef859/41586_2022_4550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验