Suppr超能文献

基于金属纳米结构等离子体耦合的CdSe/ZnS量子点供体-受体的光致发光特性及其在光电器件中的应用

Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices.

作者信息

Nguyen Ha Trang, Tran Thanh Thao, Bhatt Vishwa, Kumar Manjeet, Yun Ju-Hyung

机构信息

Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea.

出版信息

J Phys Chem Lett. 2022 May 19;13(19):4394-4401. doi: 10.1021/acs.jpclett.2c00903. Epub 2022 May 12.

Abstract

Hybrid nanostructures composed of quantum dots (QDs) and metal nanoparticles (MNS) have gained immense research interest because of their unique optical properties. In optoelectronic applications, quenching and enhancement in QD photoluminescence (PL) are critical parameters. Herein, gold nanoparticles coating a silica layer decorated with quantum dots (AuNPs@SiO@QDs) are prepared with diverse SiO thickness and QD diameter for investigating the exciton-plasmon interaction. This reveals the charge interaction between QDs and AuNPs@SiO resulting from different impacts of the Föster energy-transfer process and plasmon resonance enhancement. The variation in both radiative and nonradiative energy-transfer processes in CdSe/ZnS QDs donor-acceptor pairs clarifies the impact of AuNPs@SiO. In addition, the hybrid structures are plainly incorporated with silicon solar cells, which activated the improvement in the power conversion efficiency (PCE). With the significant tunability of the PL intensity in the visible and near-infrared regions, this hybrid nanostructure provides potential strategies for developing efficient optoelectronics via facile methods.

摘要

由量子点(QDs)和金属纳米颗粒(MNS)组成的混合纳米结构因其独特的光学性质而引起了广泛的研究兴趣。在光电应用中,量子点光致发光(PL)的猝灭和增强是关键参数。在此,制备了具有不同SiO厚度和量子点直径的涂覆有量子点的二氧化硅层的金纳米颗粒(AuNPs@SiO@QDs),用于研究激子-等离子体相互作用。这揭示了由于福斯特能量转移过程和等离子体共振增强的不同影响而导致的量子点与AuNPs@SiO之间的电荷相互作用。CdSe/ZnS量子点供体-受体对中辐射和非辐射能量转移过程的变化阐明了AuNPs@SiO的影响。此外,这种混合结构可直接与硅太阳能电池结合,从而提高了功率转换效率(PCE)。由于在可见光和近红外区域PL强度具有显著的可调性,这种混合纳米结构为通过简便方法开发高效光电器件提供了潜在策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验