Suppr超能文献

妊娠期糖尿病合并巨大儿患者的外泌体 RNA 表达谱及其预测性能。

Exosomal RNA Expression Profiles and Their Prediction Performance in Patients With Gestational Diabetes Mellitus and Macrosomia.

机构信息

Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, China.

Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.

出版信息

Front Endocrinol (Lausanne). 2022 Apr 25;13:864971. doi: 10.3389/fendo.2022.864971. eCollection 2022.

Abstract

INTRODUCTION

Exosomes are cell-derived vesicles that are present in many biological fluids. Exosomal RNAs in cord blood may allow intercellular communication between mother and fetus. We aimed to establish exosomal RNA expression profiles in cord blood from patients with gestational diabetes mellitus and macrosomia (GDM-M) and evaluate their prediction performance.

METHODS

We used microarray technology to establish the differential messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) expression profiles in cord blood exosomes from 3 patients with GDM-M compared with 3 patients with GDM and normal neonatal weight, followed by qPCR validation in an additional 40 patients with GDM. Logistic regression, receiver operating characteristic (ROC) curves, and graphical nomogram were applied to evaluate the performance of exosomal RNA (in peripheral blood) in macrosomia prediction.

RESULTS

A total of 98 mRNAs, 372 lncRNAs, and 452 circRNAs were differentially expressed in cord blood exosomes from patients with GDM-M. Pathway analysis based on screening data showed that the differential genes were associated with Phosphatidylinositol 3'-kinase (PI3acK)-Akt signaling pathway, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway, Transforming growth factor (TGF)-beta signaling pathway, insulin resistance, glycerolipid metabolism, fatty acid degradation, and mammalian target of rapamycin (mTOR) signaling pathway. After validation by qPCR, the expressions of GDF3, PROM1, AC006064.4, lnc-HPS6-1:1, and circ_0014635 were significantly increased and the expression of lnc-ZFHX3-7:1 was significantly decreased in cord blood exosomes of an additional 20 patients with GDM-M. The risk prediction performance of the expression of these validated genes (in peripheral blood exosomes) for GDM-related macrosomia was also evaluated. Only GDF3 expression and AC006064.4 expression showed well prediction performance [area under the curve (AUC) = 0.78 and 0.74, respectively]. Excitingly, the model including maternal age, fasting plasma glucose, 2-h plasma glucose, GDF3 expression, and AC006064.4 expression in peripheral blood exosomes had better prediction performance with an AUC of 0.86 (95% CI = 0.75-0.97).

CONCLUSION

These results showed that exosomal RNAs are aberrantly expressed in the cord blood of patients with GDM-M and highlighted the importance of exosomal RNAs in peripheral blood for GDM-M prediction.

摘要

简介

外泌体是存在于多种生物体液中的细胞衍生小泡。脐血中的外泌体 RNA 可能允许母体和胎儿之间进行细胞间通讯。我们旨在建立妊娠糖尿病合并巨大儿(GDM-M)患者脐带血中外泌体 RNA 的表达谱,并评估其预测性能。

方法

我们使用微阵列技术建立了 3 例 GDM-M 患者与 3 例 GDM 新生儿体重正常患者脐血外泌体中差异信使 RNA(mRNA)、长链非编码 RNA(lncRNA)和环状 RNA(circRNA)的表达谱,随后在另外 40 例 GDM 患者中进行 qPCR 验证。逻辑回归、受试者工作特征(ROC)曲线和图形列线图用于评估外周血中外泌体 RNA 在巨大儿预测中的性能。

结果

GDM-M 患者脐带血外泌体中共筛选出 98 个差异表达的 mRNAs、372 个 lncRNAs 和 452 个 circRNAs。基于筛选数据的通路分析显示,差异基因与磷脂酰肌醇 3'-激酶(PI3K)-Akt 信号通路、Janus 激酶/信号转导和转录激活因子(JAK/STAT)信号通路、转化生长因子(TGF)-β信号通路、胰岛素抵抗、甘油磷脂代谢、脂肪酸降解和哺乳动物雷帕霉素靶蛋白(mTOR)信号通路有关。通过 qPCR 验证后,在另外 20 例 GDM-M 患者的脐带血外泌体中,GDF3、PROM1、AC006064.4、lnc-HPS6-1:1 和 circ_0014635 的表达显著增加,lnc-ZFHX3-7:1 的表达显著降低。还评估了这些经验证基因(外周血外泌体)在与 GDM 相关的巨大儿中的表达对风险的预测性能。只有 GDF3 表达和 AC006064.4 表达具有较好的预测性能[曲线下面积(AUC)分别为 0.78 和 0.74]。令人兴奋的是,包含外周血中外泌体中母亲年龄、空腹血糖、2 小时血糖、GDF3 表达和 AC006064.4 表达的模型具有更好的预测性能,AUC 为 0.86(95%CI=0.75-0.97)。

结论

这些结果表明,GDM-M 患者脐带血中外泌体 RNA 表达异常,并强调了外周血中外泌体 RNA 在 GDM-M 预测中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3709/9082313/722270e9a7bd/fendo-13-864971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验