Suppr超能文献

基于神经网络模糊语义最优控制的英语翻译模型构建。

Construction of English Translation Model Based on Neural Network Fuzzy Semantic Optimal Control.

机构信息

School of English Language and Culture, Xi'an Fanyi University, Xi'an, Shaanxi 710105, China.

School of Foreign Languages, Xidian University, Xi'an, Shaanxi 710126, China.

出版信息

Comput Intell Neurosci. 2022 May 2;2022:9308236. doi: 10.1155/2022/9308236. eCollection 2022.

Abstract

This work addresses four aspects of the English translation model: consistency, model structure, semantic understanding, and knowledge fusion. To solve the problem of lack of personality consistency in the responses generated by neural networks in English translation models, an English translation model with fuzzy semantic optimal control of neural networks is proposed in this study. The model uses a fuzzy semantic optimal control retrieval mechanism to obtain appropriate information from an externally set English information table; to further improve the effectiveness of the model in retrieving correct information, this work adopts a two-stage training method, using ordinary English translation data for model pretraining and then fine-tuning the model using English translation data with optimal control containing fuzzy semantic information. The model consists of two parts, a sequence generation network that can output the probability distribution of words and an evaluation network that can predict future whole-sentence returns. In particular, the evaluation network can evaluate the impact of currently generated words on whole sentences using deep inheritance features so that the model can consider not only the optimal solution for the current words, as in other generative models, but also the optimal solution for future generated whole sentences. The experimental results show that the English translation model with fuzzy semantic optimal control of the neural network proposed in this study can obtain better semantic feature representation by using a novel bidirectional neural network and a masked language model to train sentence vectors; the combination of semantic features and fuzzy semantic similarity features can obtain higher scoring accuracy and better model generalization. In English translation applications, there are large improvements in scoring accuracy and generality.

摘要

本工作针对英文翻译模型的四个方面

一致性、模型结构、语义理解和知识融合。为了解决神经网络在英文翻译模型中生成的响应缺乏个性一致性的问题,本研究提出了一种具有神经网络模糊语义最优控制的英文翻译模型。该模型使用模糊语义最优控制检索机制从外部设定的英文信息表中获取适当的信息;为了进一步提高模型检索正确信息的有效性,本工作采用两阶段训练方法,使用普通英文翻译数据对模型进行预训练,然后使用包含模糊语义信息的最优控制英文翻译数据对模型进行微调。该模型由两部分组成,一个可以输出单词概率分布的序列生成网络和一个可以预测未来整个句子返回的评估网络。特别是,评估网络可以使用深度继承特征来评估当前生成单词对整个句子的影响,以便模型不仅可以考虑当前单词的最优解,就像其他生成模型一样,还可以考虑未来生成的整个句子的最优解。实验结果表明,本研究提出的具有神经网络模糊语义最优控制的英文翻译模型通过使用新颖的双向神经网络和屏蔽语言模型训练句子向量,可以获得更好的语义特征表示;语义特征和模糊语义相似性特征的组合可以获得更高的评分准确性和更好的模型泛化。在英文翻译应用中,评分准确性和通用性都有很大的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d90/9085337/1fe966564d51/CIN2022-9308236.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验