Suppr超能文献

用于丙烯聚合的流化床反应器放大过程中的传热效应。

Heat transfer effect in scaling-up a fluidized bed reactor for propylene polymerization.

作者信息

Bumphenkiattikul Panut, Limtrakul Sunun, Vatanatham Terdthai, Khongprom Parinya, Ramachandran Palghat A

机构信息

Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand

Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand.

出版信息

RSC Adv. 2018 Aug 7;8(50):28293-28312. doi: 10.1039/c8ra04834g.

Abstract

The effects of operating conditions and scaling-up on reactor temperature control and performance in propylene polymerization fluidized bed reactors were studied by phenomenological and CFD models. A phenomenological model with CFD hydrodynamics parameters predicts average information, while a CFD-based reactor model provides local information. Results suggest improved productivity and reactor temperature control by cautiously increasing catalyst feed rate, operating temperature, reactor size and superficial velocity, with consideration of hot spots and catalyst deactivation. High catalyst loading increases productivity but involves risk with regards to the control of oscillating temperature and hot spots. The model identifies an operating window to improve productivity and temperature control and to study operation details. Mixing effect is important to heat transfer but not to propylene conversion. Scaling-up cannot provide similarity of heat transfer. Keeping the same temperature when scaling up from 0.2 to 4 m in diameter requires heat transfer area multiplying factors of 2.43 to 5.26 or lowering the wall temperature by 7 to 18 K. Hot spots are detected with a temperature variation of 10 to 14 K. The results are useful for analyses of laboratory and industrial scale reactors and provide information on scale up.

摘要

通过唯象模型和计算流体力学(CFD)模型研究了操作条件和放大对丙烯聚合流化床反应器中反应器温度控制和性能的影响。一个包含CFD流体动力学参数的唯象模型可预测平均信息,而基于CFD的反应器模型则提供局部信息。结果表明,在考虑热点和催化剂失活的情况下,谨慎提高催化剂进料速率、操作温度、反应器尺寸和表观气速,可提高生产率并改善反应器温度控制。高催化剂负载量可提高生产率,但在控制振荡温度和热点方面存在风险。该模型确定了一个操作窗口,以提高生产率和温度控制,并研究操作细节。混合效应对于传热很重要,但对丙烯转化率并不重要。放大不能提供相似的传热效果。从直径0.2米放大到4米时,要保持相同温度,需要将传热面积乘以2.43至5.26的系数,或使壁温降低7至18K。检测到的热点温度变化为10至14K。这些结果有助于分析实验室规模和工业规模的反应器,并提供放大方面的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367c/9084399/b8f3c31ffec3/c8ra04834g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验