Suppr超能文献

基于硼二吡咯亚甲基衍生物的近红外染料的合理设计及其在有机太阳能电池中的应用

Rational design of near-infrared dyes based on boron dipyrromethene derivatives for application in organic solar cells.

作者信息

Zhang Man, Jin Ruifa

机构信息

Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China

出版信息

RSC Adv. 2018 Oct 2;8(59):33659-33665. doi: 10.1039/c8ra06940a. eCollection 2018 Sep 28.

Abstract

With the aim to further improve the light-absorption efficiency of organic solar cells (OSCs), we have designed a series of novel pyrrolopyrrole boron dipyrromethene (BODIPY) derivatives by replacing the sulfur atom and introducing different fused aromatic heterocycle end-caps. The optical, electronic, and charge transporting properties of the designed molecules have been systematically investigated by applying density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies. The calculated the frontier molecular orbital (FMO) energies and spectral properties showed that the designed molecules exhibit narrower band gaps and strong absorption in the red/near-infrared (NIR) region, which led to the higher light-absorbing efficiency. Furthermore, the calculated reorganization energies show that the designed molecules are expected to be promising candidates for hole and/or electron transport materials. The results reveal that the designed molecules can serve as high-efficiency red/NIR-active donor materials as well as hole and/or electron transport materials in OSC applications.

摘要

为了进一步提高有机太阳能电池(OSCs)的光吸收效率,我们通过取代硫原子并引入不同的稠合芳香杂环端基,设计了一系列新型吡咯并吡咯硼二吡咯亚甲基(BODIPY)衍生物。通过应用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法,系统地研究了所设计分子的光学、电子和电荷传输性质。计算得到的前线分子轨道(FMO)能量和光谱性质表明,所设计的分子具有更窄的带隙和在红/近红外(NIR)区域的强吸收,这导致了更高的光吸收效率。此外,计算得到的重组能表明,所设计的分子有望成为空穴和/或电子传输材料的有前途的候选者。结果表明,所设计的分子可以作为高效的红色/NIR活性供体材料以及OSC应用中的空穴和/或电子传输材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268a/9086563/394712f6119d/c8ra06940a-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验