Jin Ruifa, Zhang Xinhao, Xin Jingfan, Xiao Wenmin
College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China.
Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China.
J Mol Model. 2023 Aug 5;29(9):273. doi: 10.1007/s00894-023-05680-8.
Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔE), open-circuit voltage (V), fill factor (FF), reorganization energy (λ), exciton binding energy (E), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔE, large V, and FF values and low E when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PCBM, bisPCBM, and PCBM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs.
All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
开发新型材料对提高有机太阳能电池(OSC)的光伏性能提出了巨大挑战。在本文中,我们设计了一系列供体-π桥-受体-π桥-供体(D-π-A-π-D)结构分子。这些分子由二酮吡咯并吡咯(DPP)部分作为核心、9-己基咔唑部分作为端基以及不同的平面富电子芳香基团作为π桥组成。密度泛函理论(DFT)和含时DFT(TD-DFT)计算表明,通过引入不同的π桥,可以有效地调节所设计分子的前沿分子轨道(FMO)能级、能隙、电子驱动力(ΔE)、开路电压(V)、填充因子(FF)、重组能(λ)、激子结合能(E)和吸收光谱。所设计的分子具有窄能隙和强吸收光谱,这有利于提高有机太阳能电池的光电转换效率。此外,当使用典型的富勒烯衍生物作为受体时,所设计的分子具有大的ΔE、大的V和FF值以及低的E。所设计分子的FMO能级可以与典型的富勒烯受体PCBM、双PCBM和PCBM很好地匹配。我们的结果表明,所设计的分子有望成为用于OSC的有前景的供体材料。
所有DFT和TD-DFT计算均使用高斯09代码进行。所选择的计算技术是混合泛函B3LYP和6-31G(d,p)基组。在TD-DFT水平上使用极化连续介质模型(PCM)考虑了苯和氯仿溶剂效应。使用GaussSum 1.0程序绘制所设计分子的模拟吸收光谱。