Suppr超能文献

一种基于组织特异性代谢物注释的大气质谱成像方法揭示了整只小鼠全身的空间代谢变化。

An Organ-Specific Metabolite Annotation Approach for Ambient Mass Spectrometry Imaging Reveals Spatial Metabolic Alterations of a Whole Mouse Body.

机构信息

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.

出版信息

Anal Chem. 2022 May 24;94(20):7286-7294. doi: 10.1021/acs.analchem.2c00557. Epub 2022 May 11.

Abstract

Rapid and accurate metabolite annotation in mass spectrometry imaging (MSI) can improve the efficiency of spatially resolved metabolomics studies and accelerate the discovery of reliable disease biomarkers. To date, metabolite annotation tools in MSI generally utilize isotopic patterns, but high-throughput fragmentation-based identification and biological and technical factors that influence structure elucidation are active challenges. Here, we proposed an organ-specific, metabolite-database-driven approach to facilitate efficient and accurate MSI metabolite annotation. Using data-dependent acquisition (DDA) in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to generate high-coverage product ions, we identified 1620 unique metabolites from eight mouse organs (brain, liver, kidney, heart, spleen, lung, muscle, and pancreas) and serum. Following the evaluation of the adduct form difference of metabolite ions between LC-MS and airflow-assisted desorption electrospray ionization (AFADESI)-MSI and deciphering organ-specific metabolites, we constructed a metabolite database for MSI consisting of 27,407 adduct ions. An automated annotation tool, MSIannotator, was then created to conduct metabolite annotation in the MSI dataset with high efficiency and confidence. We applied this approach to profile the spatially resolved landscape of the whole mouse body and discovered that metabolites were distributed across the body in an organ-specific manner, which even spanned different mouse strains. Furthermore, the spatial metabolic alteration in diabetic mice was delineated across different organs, exhibiting that differentially expressed metabolites were mainly located in the liver, brain, and kidney, and the alanine, aspartate, and glutamate metabolism pathway was simultaneously altered in these three organs. This approach not only enables robust metabolite annotation and visualization on a body-wide level but also provides a valuable database resource for underlying organ-specific metabolic mechanisms.

摘要

在质谱成像 (MSI) 中快速准确地注释代谢物可以提高空间分辨代谢组学研究的效率,并加速可靠疾病生物标志物的发现。迄今为止,MSI 中的代谢物注释工具通常利用同位素模式,但基于高通量碎片化的鉴定以及影响结构阐明的生物学和技术因素仍然是活跃的挑战。在这里,我们提出了一种器官特异性、代谢物数据库驱动的方法,以促进高效准确的 MSI 代谢物注释。使用液相色谱与串联质谱 (LC-MS/MS) 中的数据依赖采集 (DDA) 生成高覆盖率的产物离子,我们从 8 个小鼠器官(大脑、肝脏、肾脏、心脏、脾脏、肺、肌肉和胰腺)和血清中鉴定出 1620 种独特的代谢物。在评估代谢物离子在 LC-MS 和气流辅助解吸电喷雾电离 (AFADESI)-MSI 之间的加合物形式差异并解析器官特异性代谢物之后,我们构建了一个包含 27407 个加合物离子的 MSI 代谢物数据库。然后创建了一个自动化注释工具 MSIannotator,以高效、有信心地对 MSI 数据集进行代谢物注释。我们应用这种方法来描绘整个小鼠体的空间分辨景观,并发现代谢物以器官特异性的方式分布在整个身体中,甚至跨越不同的小鼠品系。此外,还描绘了糖尿病小鼠不同器官中的空间代谢变化,表现出差异表达的代谢物主要位于肝脏、大脑和肾脏,并且这三个器官中的丙氨酸、天冬氨酸和谷氨酸代谢途径同时发生改变。这种方法不仅能够在全身水平上实现强大的代谢物注释和可视化,还为潜在的器官特异性代谢机制提供了有价值的数据库资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验