文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用基于数字减影血管造影视频的深度学习实时自动预测肝细胞癌患者经导管动脉化疗栓塞治疗反应。

Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos.

机构信息

Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.

Shenzhen Research Institute of Big Data, Shenzhen, Guangdong, China.

出版信息

Cancer Imaging. 2022 May 12;22(1):23. doi: 10.1186/s40644-022-00457-3.


DOI:10.1186/s40644-022-00457-3
PMID:35549776
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9101835/
Abstract

BACKGROUND: Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate prediction of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital subtraction angiography (DSA) videos via a deep learning approach. METHODS: This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 2, respectively. RESULTS: Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73-0.78) and 0.73 (95% CI: 0.71-0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmentation results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment response to first TACE with an accuracy of 78.2% (95%CI: 74.2-82.3), sensitivity of 77.6% (95%CI: 70.7-84.0), and specificity of 78.7% (95%CI: 72.9-84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1-81.7), sensitivity of 50.5% (95%CI: 40.0-61.5), and specificity of 83.5% (95%CI: 79.2-87.7) for the external validation cohort. Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-responders divided by Model 2 (p = 0.002). CONCLUSIONS: Our multi-task deep learning framework provided a real-time effective approach for decoding DSA videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world settings.

摘要

背景:经导管动脉化疗栓塞术(TACE)是治疗中期肝细胞癌(HCC)的主要方法;然而,其疗效在同一肿瘤分期的患者之间存在差异。准确预测 TACE 反应仍然是避免过度治疗的主要关注点。因此,我们旨在开发和验证一种基于深度学习方法的人工智能系统,通过数字减影血管造影(DSA)视频实时自动预测 HCC 患者的 TACE 反应。

方法:本回顾性队列研究共纳入 605 例接受 TACE 作为初始治疗的中期 HCC 患者。一个完全自动化的框架(即 DSA-Net)包含一个用于自动肿瘤分割的 U-net 模型(模型 1)和一个用于预测首次 TACE 治疗反应的 ResNet 模型(模型 2)。两个模型在 360 名患者中进行训练,在 124 名患者中进行内部验证,在 121 名患者中进行外部验证。使用 Dice 系数和受试者工作特征曲线分别评估模型 1 和模型 2 的性能。

结果:模型 1 在内部验证队列和外部验证队列中的 Dice 系数分别为 0.75(95%置信区间 [CI]:0.73-0.78)和 0.73(95%CI:0.71-0.75)。整合 DSA 视频、分割结果和临床变量(主要是人口统计学和肝功能参数)后,模型 2 对首次 TACE 治疗反应的预测准确率为 78.2%(95%CI:74.2-82.3),灵敏度为 77.6%(95%CI:70.7-84.0),特异性为 78.7%(95%CI:72.9-84.1)内部验证队列,准确率为 75.1%(95% CI:73.1-81.7),灵敏度为 50.5%(95%CI:40.0-61.5),特异性为 83.5%(95%CI:79.2-87.7)外部验证队列。Kaplan-Meier 曲线显示,根据模型 2 划分的无进展生存期在反应者和无反应者之间存在显著差异(p=0.002)。

结论:我们的多任务深度学习框架为解码 DSA 视频提供了一种实时有效的方法,可以为现实环境中中期 HCC 患者的 TACE 治疗提供临床决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/4ebbfb70d9a7/40644_2022_457_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/683a61120745/40644_2022_457_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/5141f340ef1a/40644_2022_457_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/9219d6bfb156/40644_2022_457_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/4ebbfb70d9a7/40644_2022_457_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/683a61120745/40644_2022_457_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/5141f340ef1a/40644_2022_457_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/9219d6bfb156/40644_2022_457_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e43e/9101835/4ebbfb70d9a7/40644_2022_457_Fig4_HTML.jpg

相似文献

[1]
Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos.

Cancer Imaging. 2022-5-12

[2]
Detection of hepatocellular carcinoma feeding vessels: MDCT angiography with 3D reconstruction versus digital subtraction angiography.

BMC Med Imaging. 2024-9-18

[3]
Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.

Eur Radiol. 2020-1-3

[4]
Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.

Eur Radiol. 2019-7-22

[5]
Contrast-Enhanced CT Imaging Features Combined with Clinical Factors to Predict the Efficacy and Prognosis for Transarterial Chemoembolization of Hepatocellular Carcinoma.

Acad Radiol. 2023-9

[6]
Non-invasive assessment of response to transcatheter arterial chemoembolization for hepatocellular carcinoma with the deep neural networks-based radiomics nomogram.

Acta Radiol. 2024-6

[7]
C-arm Lipiodol CT in transcatheter arterial chemoembolization for small hepatocellular carcinoma.

World J Gastroenterol. 2015-3-14

[8]
Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC.

Eur Radiol. 2022-9

[9]
Risk factors for local recurrence of hepatocellular carcinoma after transcatheter arterial chemoembolization with drug-eluting beads (DEB-TACE).

Jpn J Radiol. 2019-7

[10]
The safety and efficacy of balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma refractory to conventional transcatheter arterial chemoembolization.

Eur Radiol. 2020-10

引用本文的文献

[1]
Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers.

Front Artif Intell. 2024-12-20

[2]
Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy.

Am J Cancer Res. 2024-9-25

[3]
Future AI Will Most Likely Predict Antibody-Drug Conjugate Response in Oncology: A Review and Expert Opinion.

Cancers (Basel). 2024-9-5

[4]
How AI and Robotics Will Advance Interventional Radiology: Narrative Review and Future Perspectives.

Diagnostics (Basel). 2024-6-29

[5]
Feasibility of Multimodal Artificial Intelligence Using GPT-4 Vision for the Classification of Middle Ear Disease: Qualitative Study and Validation.

JMIR AI. 2024-5-31

[6]
Harnessing artificial intelligence in radiology to augment population health.

Front Med Technol. 2023-11-8

[7]
Multimodal deep learning for liver cancer applications: a scoping review.

Front Artif Intell. 2023-10-27

[8]
Hepatic artery chemoembolization with distal transradial access for primary hepatocellular carcinoma: a novel interventional therapy for peripheral tumors.

Am J Transl Res. 2023-9-15

[9]
Prediction model of no-response before the first transarterial chemoembolization for hepatocellular carcinoma: TACF score.

Discov Oncol. 2023-10-17

[10]
Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis.

Front Oncol. 2023-2-16

本文引用的文献

[1]
Lack of Response to Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma: Abandon or Repeat?

Radiology. 2021-3

[2]
Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning.

Gut. 2021-5

[3]
Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis.

Comput Methods Programs Biomed. 2020-11

[4]
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9

[5]
Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.

Eur Radiol. 2020-1-3

[6]
A New Treatment Option for Intermediate-Stage Hepatocellular Carcinoma with High Tumor Burden: Initial Lenvatinib Therapy with Subsequent Selective TACE.

Liver Cancer. 2019-10

[7]
Automatic Diagnosis Based on Spatial Information Fusion Feature for Intracranial Aneurysm.

IEEE Trans Med Imaging. 2020-5

[8]
Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.

Eur Radiol. 2019-7-22

[9]
Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study.

J Hepatol. 2019-7-12

[10]
Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study.

J Hepatol. 2019-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索