Suppr超能文献

基于 CT 影像预测肝细胞癌经动脉化疗栓塞治疗反应的残差卷积神经网络。

Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.

机构信息

Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China.

出版信息

Eur Radiol. 2020 Jan;30(1):413-424. doi: 10.1007/s00330-019-06318-1. Epub 2019 Jul 22.

Abstract

BACKGROUND

We attempted to train and validate a model of deep learning for the preoperative prediction of the response of patients with intermediate-stage hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE).

METHOD

All computed tomography (CT) images were acquired for 562 patients from the Nan Fang Hospital (NFH), 89 patients from Zhu Hai Hospital Affiliated with Jinan University (ZHHAJU), and 138 patients from the Sun Yat-sen University Cancer Center (SYUCC). We built a predictive model from the outputs using the transfer learning techniques of a residual convolutional neural network (ResNet50). The prediction accuracy for each patch was revaluated in two independent validation cohorts.

RESULTS

In the training set (NFH), the deep learning model had an accuracy of 84.3% and areas under curves (AUCs) of 0.97, 0.96, 0.95, and 0.96 for complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD), respectively. In the other two validation sets (ZHHAJU and SYUCC), the deep learning model had accuracies of 85.1% and 82.8% for CR, PR, SD, and PD. The ResNet50 model also had high AUCs for predicting the objective response of TACE therapy in patches and patients of three cohorts. Decision curve analysis (DCA) showed that the ResNet50 model had a high net benefit in the two validation cohorts.

CONCLUSION

The deep learning model presented a good performance for predicting the response of TACE therapy and could help clinicians in better screening patients with HCC who can benefit from the interventional treatment.

KEY POINTS

• Therapy response of TACE can be predicted by a deep learning model based on CT images. • The probability value from a trained or validation deep learning model showed significant correlation with different therapy responses. • Further improvement is necessary before clinical utilization.

摘要

背景

我们试图训练和验证一种深度学习模型,用于预测接受经动脉化疗栓塞术(TACE)的中晚期肝细胞癌(HCC)患者的治疗反应。

方法

从南方医院(NFH)的 562 名患者、暨南大学附属珠海医院(ZHHAJU)的 89 名患者和中山大学肿瘤防治中心(SYUCC)的 138 名患者采集所有 CT 图像。我们使用残差卷积神经网络(ResNet50)的迁移学习技术从输出结果中构建预测模型。在两个独立的验证队列中重新评估每个斑块的预测准确性。

结果

在训练集(NFH)中,深度学习模型的准确率为 84.3%,完全缓解(CR)、部分缓解(PR)、稳定疾病(SD)和进展性疾病(PD)的曲线下面积(AUC)分别为 0.97、0.96、0.95 和 0.96。在另外两个验证集(ZHHAJU 和 SYUCC)中,深度学习模型对 CR、PR、SD 和 PD 的准确率分别为 85.1%和 82.8%。ResNet50 模型在预测三个队列的 TACE 治疗客观反应的斑块和患者中也具有较高的 AUC。决策曲线分析(DCA)表明,ResNet50 模型在两个验证队列中具有较高的净收益。

结论

深度学习模型在预测 TACE 治疗反应方面表现出良好的性能,有助于临床医生更好地筛选受益于介入治疗的 HCC 患者。

关键点

  • 基于 CT 图像,深度学习模型可以预测 TACE 治疗反应。

  • 来自训练或验证的深度学习模型的概率值与不同的治疗反应显著相关。

  • 临床应用前需进一步改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验