Suppr超能文献

欧洲中期天气预报中心通过深度学习提高短期预测准确性。

ECMWF short-term prediction accuracy improvement by deep learning.

机构信息

Department of Quantitative Methods and Economic Informatics, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 01026, Zilina, Slovakia.

Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB Technical University of Ostrava, 70833, Ostrava-Poruba, Czech Republic.

出版信息

Sci Rep. 2022 May 12;12(1):7898. doi: 10.1038/s41598-022-11936-9.

Abstract

This paper aims to describe and evaluate the proposed calibration model based on a neural network for post-processing of two essential meteorological parameters, namely near-surface air temperature (2 m) and 24 h accumulated precipitation. The main idea behind this work is to improve short-term (up to 3 days) forecasts delivered by a global numerical weather prediction (NWP) model called ECMWF (European Centre for Medium-Range Weather Forecasts). In comparison to the existing local weather models that typically provide weather forecasts for limited geographic areas (e.g., within one country but they are more accurate), ECMWF offers a prediction of the weather phenomena across the world. Another significant benefit of this global NWP model includes the fact, that by using it in several well-known online applications, forecasts are freely available while local models outputs are often paid. Our proposed ECMWF-enhancing model uses a combination of raw ECMWF data and additional input parameters we have identified as useful for ECMWF error estimation and its subsequent correction. The ground truth data used for the training phase of our model consists of real observations from weather stations located in 10 cities across two European countries. The results obtained from cross-validation indicate that our parametric model outperforms the accuracy of a standard ECMWF prediction and gets closer to the forecast precision of the local NWP models.

摘要

本文旨在描述和评估基于神经网络的后处理两个基本气象参数(即近地表空气温度(2 米)和 24 小时累计降水量)的校准模型。这项工作的主要思想是改进由欧洲中期天气预报中心(ECMWF)称为全球数值天气预报(NWP)模型提供的短期(长达 3 天)预测。与通常为有限地理区域(例如,一个国家内)提供天气预报的现有本地天气模型相比,ECMWF 提供了全球天气现象的预测。该全球 NWP 模型的另一个重要优势在于,通过在几个知名的在线应用程序中使用它,预测是免费的,而本地模型的输出通常是付费的。我们提出的增强 ECMWF 的模型使用了原始 ECMWF 数据的组合以及我们确定的对 ECMWF 误差估计及其后续校正有用的其他输入参数。我们模型的训练阶段使用了来自两个欧洲国家的 10 个城市的气象站的真实观测数据。交叉验证的结果表明,我们的参数模型在预测精度上优于标准 ECMWF 预测,并更接近本地 NWP 模型的预测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ab/9098423/37343b936ecb/41598_2022_11936_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验